欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

28335的CAN总线学习笔记

程序员文章站 2024-02-23 22:01:40
...

在调试28335的CAN的发送时出现的问题:

1、接口用错导致一直失败;

2、注意28335的CAN总线波特率计算,如下所述:

ECanaShadow.CANBTC.bit.BRPREG = 9;

ECanaShadow.CANBTC.bit.TSEG2REG = 2;

ECanaShadow.CANBTC.bit.TSEG1REG = 10;

以上代码是配置28335的CAN总线模块波特率,最后的波特率为:

28335的CAN总线学习笔记

按照上面的参数计算最后的波特率为500k;

同时还需要注意28335的CAN总线中比较特殊的说明,如下所述:

1、是关于波特率配置的描述:

28335的CAN总线学习笔记

2、关于CAN网络的说明:

28335的CAN总线学习笔记

必须保证在网络中有一个设备和当前节点配置为同样的波特率,但是不一定要设置为接收模式;

附:最后的配置程序:

void InitECana(void)		// 初始化CAN总线模块
{
/* Create a shadow register structure for the CAN control registers. This is
 needed, since only 32-bit access is allowed to these registers. 16-bit access
 to these registers could potentially corrupt the register contents or return
 false data. This is especially true while writing to/reading from a bit
 (or group of bits) among bits 16 - 31 */
 
 
struct ECAN_REGS ECanaShadow;
 
 
	EALLOW;		// EALLOW enables access to protected bits
 
 
/* Configure eCAN RX and TX pins for CAN operation using eCAN regs*/
 
 
    ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all;
    ECanaShadow.CANTIOC.bit.TXFUNC = 1;
    ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;
 
 
    ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all;
    ECanaShadow.CANRIOC.bit.RXFUNC = 1;
    ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all;
 
 
/* Configure eCAN for HECC mode - (reqd to access mailboxes 16 thru 31) */
									// HECC mode also enables time-stamping feature
 
 
	ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
	ECanaShadow.CANMC.bit.SCB = 1;
	ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
 
 
/* Initialize all bits of 'Master Control Field' to zero */
// Some bits of MSGCTRL register come up in an unknown state. For proper operation,
// all bits (including reserved bits) of MSGCTRL must be initialized to zero
 
 
    ECanaMboxes.MBOX0.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX1.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX2.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX3.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX4.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX5.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX6.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX7.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX8.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX9.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX10.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX11.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX12.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX13.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX14.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX15.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX16.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX17.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX18.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX19.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX20.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX21.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX22.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX23.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX24.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX25.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX26.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX27.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX28.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX29.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX30.MSGCTRL.all = 0x00000000;
    ECanaMboxes.MBOX31.MSGCTRL.all = 0x00000000;
 
 
// TAn, RMPn, GIFn bits are all zero upon reset and are cleared again
//	as a matter of precaution.
 
 
	ECanaRegs.CANTA.all	= 0xFFFFFFFF;	/* Clear all TAn bits */
 
 
	ECanaRegs.CANRMP.all = 0xFFFFFFFF;	/* Clear all RMPn bits */
 
 
	ECanaRegs.CANGIF0.all = 0xFFFFFFFF;	/* Clear all interrupt flag bits */
	ECanaRegs.CANGIF1.all = 0xFFFFFFFF;
 
 
 
 
/* Configure bit timing parameters for eCANA*/
	ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
	ECanaShadow.CANMC.bit.CCR = 1 ;            // Set CCR = 1
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
 
 
    ECanaShadow.CANES.all = ECanaRegs.CANES.all;
 
 
    do
	{
	    ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 1 );  		// Wait for CCE bit to be set..
 
 
    ECanaShadow.CANBTC.all = 0;
 
 
    #if (CPU_FRQ_150MHZ)                 
//初始化通信波特率
/*
具体的波特率计算:
波特率=系统时钟/(2*(BRPREG+TSEG2REG+TSEG1REG+3)),同时需要确保TSEG1REG > TSEG2REG 
*/
			ECanaShadow.CANBTC.bit.BRPREG = 9;
			ECanaShadow.CANBTC.bit.TSEG2REG = 2;
			ECanaShadow.CANBTC.bit.TSEG1REG = 10;
    #endif
    ECanaShadow.CANBTC.bit.SAM = 1;
 
    ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all;
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
	ECanaShadow.CANMC.bit.CCR = 0 ;            // Set CCR = 0
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
    ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    do
    {
       ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 0 ); 		// Wait for CCE bit to be  cleared..
 
 
/* Disable all Mailboxes  */
 	ECanaRegs.CANME.all = 0;		// Required before writing the MSGIDs
 
 
    EDIS;
}
 
 
 
 
 
 
void InitECanGpio(void)
{
   InitECanaGpio();
#if (DSP28_ECANB)
   InitECanbGpio();
#endif // if DSP28_ECANB
}
 
 
void InitECanaGpio(void)
{
   EALLOW;
/* Enable internal pull-up for the selected CAN pins */
// Pull-ups can be enabled or disabled by the user.
// This will enable the pullups for the specified pins.
// Comment out other unwanted lines.
	GpioCtrlRegs.GPAPUD.bit.GPIO18 = 0;	    // Enable pull-up for GPIO18 (CANRXA)
	GpioCtrlRegs.GPAPUD.bit.GPIO19 = 0;	    // Enable pull-up for GPIO19 (CANTXA)
 
 
/* Set qualification for selected CAN pins to asynch only */
// Inputs are synchronized to SYSCLKOUT by default.
// This will select asynch (no qualification) for the selected pins.
    GpioCtrlRegs.GPAQSEL2.bit.GPIO18 = 3;   // Asynch qual for GPIO18 (CANRXA)
/* Configure eCAN-A pins using GPIO regs*/
// This specifies which of the possible GPIO pins will be eCAN functional pins.
    GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 3;	// Configure GPIO18 for CANRXA operation
    GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 3;	// Configure GPIO19 for CANTXA operation
 
 
    EDIS;
}
 
 
#if (DSP28_ECANB)
void InitECanbGpio(void)
{
   EALLOW;
/* Enable internal pull-up for the selected CAN pins */
// Pull-ups can be enabled or disabled by the user.
// This will enable the pullups for the specified pins.
// Comment out other unwanted lines.
    GpioCtrlRegs.GPAPUD.bit.GPIO12 = 0;   // Enable pull-up for GPIO12 (CANTXB)
    GpioCtrlRegs.GPAPUD.bit.GPIO13 = 0;   // Enable pull-up for GPIO13 (CANRXB)
/* Set qualification for selected CAN pins to asynch only */
// Inputs are synchronized to SYSCLKOUT by default.
// This will select asynch (no qualification) for the selected pins.
// Comment out other unwanted lines.
    GpioCtrlRegs.GPAQSEL1.bit.GPIO13 = 3; // Asynch qual for GPIO13 (CANRXB)
/* Configure eCAN-B pins using GPIO regs*/
    GpioCtrlRegs.GPAMUX1.bit.GPIO12 = 2;  // Configure GPIO12 for CANTXB operation
    GpioCtrlRegs.GPAMUX1.bit.GPIO13 = 2;  // Configure GPIO13 for CANRXB operation
 
 
 
 
    EDIS;
}
#endif // if DSP28_ECANB

具体关于CAN总线中的收发问题:

1、发送

28335的CAN总线学习笔记

28335的CAN总线学习笔记

.具体描述参见上图,配置程序如下所示:

//发送一帧数据
/*
CAN总线发送数据结构体
typedef struct
{
      unsigned short int StdId;  //标准帧ID,值为0x000到0x7FFF;
      unsigned long int ExtId; //扩展帧ID,值为0到0x1FFFFFFF
      unsigned char SAE_J1939_Flag;//表示是否使用SAE J1939协议
      SAE_ID SAE_J1939_ID;
      unsigned char IDE;   //帧类型,可为:CAN_ID_STD(标准帧),CAN_ID_EXT(扩展帧)
      unsigned char DLC;  //数据长度,可为0到8;
      unsigned char MBox_num;//邮箱编号,可为0到31;
      unsigned short int Tx_timeout_cnt;
      CAN_MSG_DATA CAN_Tx_msg_data; /*!< 帧消息内容,共8字节 */
} CanTxMsg;
*/
void CAN_Send_Msg(CanTxMsg *can_tx_msg)//发送一帧数据
{
	Uint16 time_cnt;
	Uint32 mbox_enable_temp = 0x0000;
	Uint32 mbox_disable_temp = 0x0000;
	Uint32 mbox_dir_temp = 0x0000;
	mbox_enable_temp = 1<<(can_tx_msg->MBox_num);
	mbox_disable_temp = ~(1<<(can_tx_msg->MBox_num));
	mbox_dir_temp = ~(1<<(can_tx_msg->MBox_num));
	struct ECAN_REGS ECanaShadow;
	volatile struct MBOX *Mailbox;
	Mailbox = &ECanaMboxes.MBOX0+can_tx_msg->MBox_num;
 
 
	ECanaShadow.CANME.all  = ECanaRegs.CANME.all;
	ECanaShadow.CANME.all &= mbox_disable_temp;
	ECanaRegs.CANME.all    = ECanaShadow.CANME.all;
	if(can_tx_msg->IDE == CAN_ID_STD)
	{
 
 
		Mailbox->MSGID.all = can_tx_msg->StdId; //standard identifier
		Mailbox->MSGID.bit.IDE = can_tx_msg->IDE;
	}
	else if(can_tx_msg->IDE == CAN_ID_EXT)
	{
		if(can_tx_msg->SAE_J1939_Flag == 0)
		{
			Mailbox->MSGID.all = can_tx_msg->ExtId; //extended identifier.
			Mailbox->MSGID.bit.IDE = can_tx_msg->IDE;
		}
		else
		{
			Mailbox->MSGID.all = can_tx_msg->SAE_J1939_ID.id; //extended identifier.
			Mailbox->MSGID.bit.IDE = can_tx_msg->IDE;
		}
	}
   ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;
   ECanaShadow.CANMD.all &=mbox_dir_temp;//设置邮箱工作方向,0表示邮箱工作于发送,1表示工作于接收
   ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;
   ECanaShadow.CANME.all = ECanaRegs.CANME.all;
   ECanaShadow.CANME.all |= mbox_enable_temp;//使能邮箱
   ECanaRegs.CANME.all = ECanaShadow.CANME.all;
   Mailbox->MSGCTRL.bit.DLC = can_tx_msg->DLC;//数据长度
   Mailbox->MDL.byte.BYTE0 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte0;
   Mailbox->MDL.byte.BYTE1 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte1;
   Mailbox->MDL.byte.BYTE2 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte2;
   Mailbox->MDL.byte.BYTE3 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte3;
   Mailbox->MDH.byte.BYTE4 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte4;
   Mailbox->MDH.byte.BYTE5 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte5;
   Mailbox->MDH.byte.BYTE6 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte6;
   Mailbox->MDH.byte.BYTE7 = can_tx_msg->CAN_Tx_msg_data.msg_Byte.byte7;
   ECanaShadow.CANTRS.all = 0;
   ECanaShadow.CANTRS.all |= mbox_enable_temp;             // Set TRS for mailbox under test
   ECanaRegs.CANTRS.all = ECanaShadow.CANTRS.all;
   do
	{
	ECanaShadow.CANTA.all = ECanaRegs.CANTA.all;
	time_cnt++;
	} while(((ECanaShadow.CANTA.all&mbox_enable_temp) == 0 )&&(time_cnt<100));   // Wait for TA5 bit to be set..
   ECanaShadow.CANTA.all = 0;
   ECanaShadow.CANTA.all = mbox_enable_temp;     	   // Clear TA5
   ECanaRegs.CANTA.all = ECanaShadow.CANTA.all;
 
 
}

 接收相关配置:(数据接受通常会采用中断来接收数据),具体配置程序如下,包括中断的相关配置;

void CAN_Rx_Config(void)//接收配置函数,程序中相关备注
{
 
 
	struct ECAN_REGS ECanaShadow;
	ECanaShadow.CANME.all = ECanaRegs.CANME.all;
	ECanaShadow.CANME.bit.ME1 = 0;//不使能邮箱1
	ECanaShadow.CANME.bit.ME31 = 0;//不使能邮箱31
	ECanaRegs.CANME.all = ECanaShadow.CANME.all;
	/*----------以下代码是配置接受邮箱的相关代码------------*/
	//邮箱1相关配置
	ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8;//配置数据长度,应该是没意义的;
	ECanaMboxes.MBOX1.MSGID.all = 0x07909ADC;//设置接收消息的有效ID
	ECanaMboxes.MBOX1.MSGID.bit.AME =1;//屏蔽使能位,如果需要使用屏蔽,必须将该位置1
	ECanaMboxes.MBOX1.MSGID.bit.IDE = CAN_ID_EXT;
	/*
		LAMn[28:0]
		这些位启用一个进入消息的任意标识符位的屏蔽。
		1 针对接受到的标识符的相应位, 接受一个 0 或 1( 无关) 。
		0 接收到的标识符位值必须与 MSGID 寄存器的相应标识符位相匹配。
	*/
 
 
	ECanaLAMRegs.LAM1.all = 0x000000F;//
	 /*
		LAMI 本地接受屏蔽标识符扩展位
		1 可以接收标准和扩展帧。 在扩展帧的情况下, 标识符的所有 29 位被存储在邮箱中, 本地接受屏        蔽寄存器的所有 29 位被过滤器使用。 在一个标准帧的情况下, 只有标识符的头 11 个位( 28 至         18 位)
		和本地接受屏蔽被使用。
		0 存储在邮箱中的标识符扩展位决定了哪些消息应该被接收到
	*/
	ECanaLAMRegs.LAM1.bit.LAMI = 1;
	//邮箱31相关配置
	ECanaMboxes.MBOX31.MSGCTRL.bit.DLC = 8;//配置数据长度,应该是没意义的;
	ECanaMboxes.MBOX31.MSGID.all = 0x07909ABC;//设置接收消息的有效ID
	ECanaMboxes.MBOX31.MSGID.bit.AME =1;//屏蔽使能位,
	ECanaMboxes.MBOX31.MSGID.bit.IDE = CAN_ID_EXT;
	/*
		LAM[28:0]
		这些位启用一个进入消息的任意标识符位的屏蔽。
		1 针对接受到的标识符的相应位, 接受一个 0 或 1( 无关) 。
		0 接收到的标识符位值必须与 MSGID 寄存器的相应标识符位相匹配。
	*/
 
 
	ECanaLAMRegs.LAM31.all = 0x000000F;//
/*
		LAMI 本地接受屏蔽标识符扩展位
		1 可以接收标准和扩展帧。 在扩展帧的情况下, 标识符的所有 29 位被存储在邮箱中,本地接受屏蔽寄
		存器的所有 29 位被过滤器使用。 在一个标准帧的情况下, 只有标识符的头 11 个位( 28 至 18 位)
		和本地接受屏蔽被使用。
		0 存储在邮箱中的标识符扩展位决定了哪些消息应该被接收到
*/
	ECanaLAMRegs.LAM31.bit.LAMI = 1;
	ECanaRegs.CANRMP.all      = 0xFFFFFFFF;
	ECanaShadow.CANMD.all     = ECanaRegs.CANMD.all;
	ECanaShadow.CANMD.bit.MD1 = 1;
	ECanaShadow.CANMD.bit.MD31 = 1;
	ECanaRegs.CANMD.all       = ECanaShadow.CANMD.all;
 
 
	ECanaShadow.CANME.all       = ECanaRegs.CANME.all;
	ECanaShadow.CANME.bit.ME1   = 1;//使能邮箱1
	ECanaShadow.CANME.bit.ME31  = 1;//使能邮箱1
	ECanaRegs.CANME.all         = ECanaShadow.CANME.all;
}
void CAN_Rx_IT_Concig(void)//邮箱中断相关配置
{
	EALLOW;
	ECanaRegs.CANMIM.bit.MIM1 = 1;//使能中断邮箱1的中断;
	ECanaRegs.CANMIL.bit.MIL1 = 1;//将中断1连接至中断1;
	ECanaRegs.CANMIM.bit.MIM31 = 1;//使能中断邮箱31的中断;
	ECanaRegs.CANMIL.bit.MIL31 = 1;//将中断1连接至中断1;
	ECanaRegs.CANGIM.bit.I1EN = 1;//使能中断1;
	EDIS;
}
//具体的中断函数,在清除GMIF1标志位时,不能通过向GMIF1写1来清除,只能通过向RMPn来清除该标志位 
/*
CAN总线接收数据的结构体
typedef struct
{
  unsigned short int StdId;  //标准帧ID,值为0x000到0x7FFF;
  unsigned long int ExtId; //扩展帧ID,值为0到0x1FFFFFFF
  unsigned char SAE_J1939_Flag;//表示是否使用SAE J1939协议
  SAE_ID SAE_J1939_ID;
  unsigned char IDE;   //帧类型,可为:CAN_ID_STD(标准帧),CAN_ID_EXT(扩展帧)
  unsigned char DLC;  //数据长度,可为0到8
  unsigned char MBox_num;//发送所用邮箱编号
  unsigned short int Rx_timeout_cnt;
  CAN_MSG_DATA CAN_Rx_msg_data; /*!< 帧消息内容,共8字节 */
} CanRxMsg;
*/
__interrupt void Ecana_isr1(void)
{
	if(ECanaRegs.CANGIF1.bit.GMIF1 == 1)
	{
		if(ECanaRegs.CANRMP.bit.RMP1 == 1)
		{
//读取该位是知道当前哪一个邮箱收到数据,
 
			can_rx_msg.MBox_num = ECanaRegs.CANGIF1.bit.MIV1;
			can_rx_msg.DLC = ECanaMboxes.MBOX1.MSGCTRL.bit.DLC;
			can_rx_msg.IDE = ECanaMboxes.MBOX1.MSGID.bit.IDE;
			if(can_rx_msg.IDE == CAN_ID_EXT)
			{
				can_rx_msg.ExtId = ECanaMboxes.MBOX1.MSGID.all&0x1FFFFFFF;
				can_rx_msg.SAE_J1939_ID.id = can_rx_msg.ExtId;
			}
			else if(can_rx_msg.IDE == CAN_ID_STD)
			{
				can_rx_msg.StdId = ECanaMboxes.MBOX1.MSGID.bit.STDMSGID;
			}
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte0 = ECanaMboxes.MBOX1.MDL.byte.BYTE0;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte1 = ECanaMboxes.MBOX1.MDL.byte.BYTE1;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte2 = ECanaMboxes.MBOX1.MDL.byte.BYTE2;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte3 = ECanaMboxes.MBOX1.MDL.byte.BYTE3;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte4 = ECanaMboxes.MBOX1.MDH.byte.BYTE4;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte5 = ECanaMboxes.MBOX1.MDH.byte.BYTE5;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte6 = ECanaMboxes.MBOX1.MDH.byte.BYTE6;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte7 = ECanaMboxes.MBOX1.MDH.byte.BYTE7;
		   ECanaRegs.CANRMP.bit.RMP1 = 1;
		}
		else if(ECanaRegs.CANRMP.bit.RMP31 == 1)
		{
			can_rx_msg.MBox_num = ECanaRegs.CANGIF1.bit.MIV1;
			can_rx_msg.DLC = ECanaMboxes.MBOX31.MSGCTRL.bit.DLC;
			can_rx_msg.IDE = ECanaMboxes.MBOX31.MSGID.bit.IDE;
			if(can_rx_msg.IDE == CAN_ID_EXT)
			{
				can_rx_msg.ExtId = ECanaMboxes.MBOX31.MSGID.all&0x1FFFFFFF;
				can_rx_msg.SAE_J1939_ID.id = can_rx_msg.ExtId;
			}
			else if(can_rx_msg.IDE == CAN_ID_STD)
			{
				can_rx_msg.StdId = ECanaMboxes.MBOX31.MSGID.bit.STDMSGID;
			}
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte0 = ECanaMboxes.MBOX31.MDL.byte.BYTE0;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte1 = ECanaMboxes.MBOX31.MDL.byte.BYTE1;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte2 = ECanaMboxes.MBOX31.MDL.byte.BYTE2;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte3 = ECanaMboxes.MBOX31.MDL.byte.BYTE3;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte4 = ECanaMboxes.MBOX31.MDH.byte.BYTE4;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte5 = ECanaMboxes.MBOX31.MDH.byte.BYTE5;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte6 = ECanaMboxes.MBOX31.MDH.byte.BYTE6;
		   can_rx_msg.CAN_Rx_msg_data.msg_Byte.byte7 = ECanaMboxes.MBOX31.MDH.byte.BYTE7;
		   ECanaRegs.CANRMP.bit.RMP31 = 1;
		}
	}
	PieCtrlRegs.PIEACK.bit.ACK9 = 1;
}