欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ROS进阶---Gazebo物理仿真环境搭建

程序员文章站 2024-02-23 16:23:16
...

Gazebo物理仿真环境搭建

一.ros_control

ROS进阶---Gazebo物理仿真环境搭建
ROS进阶---Gazebo物理仿真环境搭建
ros_control为开发者提供一系列控制中间件
包含一系列控制器接口/传动装置接口/硬件接口等

ROS进阶---Gazebo物理仿真环境搭建

二.Gazebo仿真步骤

1.配置机器人模型

ROS进阶---Gazebo物理仿真环境搭建
ROS进阶---Gazebo物理仿真环境搭建
ROS进阶---Gazebo物理仿真环境搭建
ROS进阶---Gazebo物理仿真环境搭建
完整代码

<?xml version="1.0"?>
<robot name="mbot" xmlns:xacro="http://www.ros.org/wiki/xacro">

    <!-- PROPERTY LIST -->
    <xacro:property name="M_PI" value="3.1415926"/>

    <xacro:property name="base_mass"   value="20" /> 
    <xacro:property name="base_length" value="0.46"/>
    <xacro:property name="base_width" value="0.20"/>
    <xacro:property name="base_height" value="0.07"/>

    <xacro:property name="wheel_mass"   value="2" />
    <xacro:property name="wheel_radius" value="0.07"/>
    <xacro:property name="wheel_length" value="0.02"/>
    <xacro:property name="wheel_joint_x" value="0.2"/>
    <xacro:property name="wheel_joint_y" value="0.11"/>
    <xacro:property name="wheel_joint_z" value="0.015"/>

    <!-- Defining the colors used in this robot -->
    <material name="yellow">
        <color rgba="1 0.4 0 1"/>
    </material>
    <material name="black">
        <color rgba="0 0 0 0.95"/>
    </material>
    <material name="gray">
        <color rgba="0.75 0.75 0.75 1"/>
    </material>

    <!-- Macro for inertia matrix -->
    <xacro:macro name="box_inertial_matrix" params="m x y z">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${m*(y*y+z*z)/12}" ixy="0" ixz="0"
                iyy="${m*(x*x+z*z)/12}" iyz="0" 
                izz="${m*(x*x+z*z)/12}" />
        </inertial>
    </xacro:macro>

    <xacro:macro name="cylinder_inertial_matrix" params="m r h">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
                iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
                izz="${m*r*r/2}" /> 
        </inertial>
    </xacro:macro>


    <!-- Macro for robot wheel -->
    <xacro:macro name="wheel" params="prefix1 prefix2 reflect1 reflect2">
        <joint name="${prefix1}_${prefix2}_wheel_joint" type="continuous">
            <origin xyz="${reflect1*wheel_joint_x} ${reflect2*wheel_joint_y} ${-wheel_joint_z}" rpy="0 0 0"/>
            <parent link="base_link"/>
            <child link="${prefix1}_${prefix2}_wheel_link"/>
            <axis xyz="0 1 0"/>
        </joint>

        <link name="${prefix1}_${prefix2}_wheel_link">
            <visual>
                <origin xyz="0 0 0" rpy="${M_PI/2} 0 0" />
                <geometry>
                    <cylinder radius="${wheel_radius}" length = "${wheel_length}"/>
                </geometry>
                <material name="gray" />
            </visual>
       	    <collision>
                <origin xyz="0 0 0" rpy="${M_PI/2} 0 0" />
                <geometry>
                    <cylinder radius="${wheel_radius}" length = "${wheel_length}"/>
                </geometry>
            </collision>
            <cylinder_inertial_matrix  m="${wheel_mass}" r="${wheel_radius}" h="${wheel_length}" />
        </link>
        <gazebo reference="${prefix1}_${prefix2}_wheel_link">
            <material>Gazebo/White</material>
        </gazebo>
        <transmission name="${prefix1}_${prefix2}_wheel_joint_trans">
            <type>transmission_interface/SimpleTransmission</type>
            <joint name="${prefix1}_${prefix2}_wheel_joint" >
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
            </joint>
            <actuator name="${prefix1}_${prefix2}_wheel_joint_motor">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
                <mechanicalReduction>1</mechanicalReduction>
            </actuator>
        </transmission>

    </xacro:macro>

<xacro:macro name="mbot_base_gazebo">
        <link name="base_footprint">
            <visual>
                <origin xyz="0 0 0" rpy="0 0 0" />
                <geometry>
                    <box size="0.001 0.001 0.001" />
                </geometry>
            </visual>
        </link>
        <gazebo reference="base_footprint">
            <turnGravityOff>false</turnGravityOff>
        </gazebo>

        <joint name="base_footprint_joint" type="fixed">
            <origin xyz="0 0 ${wheel_joint_z + wheel_radius}" rpy="0 0 0" />        
            <parent link="base_footprint"/>
            <child link="base_link" />
        </joint>

        <link name="base_link">
            <visual>
                <origin xyz=" 0 0 0" rpy="0 0 0" />
                <geometry>
                    <box size="${base_length} ${base_width} ${base_height}" />
                </geometry>
                <material name="yellow" />
            </visual>
            <collision>
                <origin xyz=" 0 0 0" rpy="0 0 0" />
                <geometry>
                    <box size="${base_length} ${base_width} ${base_height}" />
                </geometry>
            </collision>   
            <box_inertial_matrix  m="${base_mass}" x="${base_length}" y="${base_width}" z="${base_height}" />
        </link>
        <gazebo reference="base_link">
            <material>Gazebo/Gold</material>
        </gazebo>

        <wheel prefix1="left" prefix2="front" reflect1="1" reflect2="1"/>
        <wheel prefix1="right" prefix2="front" reflect1="1" reflect2="-1"/>
        <wheel prefix1="left" prefix2="back" reflect1="-1" reflect2="1"/>
        <wheel prefix1="right" prefix2="back" reflect1="-1" reflect2="-1"/>

        <gazebo>
            <plugin name="differential_drive_controller" 
                    filename="libgazebo_ros_diff_drive.so">
                <rosDebugLevel>Debug</rosDebugLevel>
                <publishWheelTF>true</publishWheelTF>
                <robotNamespace>/</robotNamespace>
                <publishTf>1</publishTf>
                <publishWheelJointState>true</publishWheelJointState>
                <alwaysOn>true</alwaysOn>
                <updateRate>100.0</updateRate>
                <legacyMode>true</legacyMode>
                <leftJoint>left_back_wheel_joint</leftJoint>
                <rightJoint>right_back_wheel_joint</rightJoint>
                <wheelSeparation>${wheel_joint_y*2-0.02}</wheelSeparation>
                <wheelDiameter>${2*wheel_radius}</wheelDiameter>
                <broadcastTF>1</broadcastTF>
                <wheelTorque>30</wheelTorque>
                <wheelAcceleration>1.8</wheelAcceleration>
                <commandTopic>cmd_vel</commandTopic>
                <odometryFrame>odom</odometryFrame> 
                <odometryTopic>odom</odometryTopic> 
                <robotBaseFrame>base_footprint</robotBaseFrame>
            </plugin>
        </gazebo> 

    </xacro:macro>
</robot>

2.创建物理仿真环境

<launch>

    <!-- 设置launch文件的参数 -->
    <arg name="paused" default="false"/>
    <arg name="use_sim_time" default="true"/>
    <arg name="gui" default="true"/>
    <arg name="headless" default="false"/>
    <arg name="debug" default="false"/>

    <!-- 运行gazebo仿真环境 -->
    <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="debug" value="$(arg debug)" />
        <arg name="gui" value="$(arg gui)" />
        <arg name="paused" value="$(arg paused)"/>
        <arg name="use_sim_time" value="$(arg use_sim_time)"/>
        <arg name="headless" value="$(arg headless)"/>
    </include>

    <!-- 加载机器人模型描述参数 -->
    <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find mbot_description)/urdf/xacro/gazebo/mbot_gazebo.xacro'" /> 

    <!-- 运行joint_state_publisher节点,发布机器人的关节状态  -->
    <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" ></node> 

    <!-- 运行robot_state_publisher节点,发布tf  -->
    <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"  output="screen" >
        <param name="publish_frequency" type="double" value="50.0" />
    </node>

    <!-- 在gazebo中加载机器人模型-->
    <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
          args="-urdf -model mrobot -param robot_description"/> 

</launch>

3.打开Gazebo显示机器人模型

空环境下的机器人模型

roslaunch mbot_gazebo view_mbot_gazebo_empty_world.launch 

ROS进阶---Gazebo物理仿真环境搭建
感觉孤零零的~

添加环境模型后的机器人

roslaunch mbot_gazebo view_mbot_gazebo_play_ground.launch 

ROS进阶---Gazebo物理仿真环境搭建
这次好多了~

3.启动键盘节点

roslaunch mbot_teleop mbot_teleop.launch 

四.传感器仿真
摄像头

<?xml version="1.0"?>
<robot name="arm" xmlns:xacro="http://www.ros.org/wiki/xacro">

    <xacro:include filename="$(find mbot_description)/urdf/xacro/gazebo/mbot_base_gazebo.xacro" />
    <xacro:include filename="$(find mbot_description)/urdf/xacro/sensors/camera_gazebo.xacro" />

    <xacro:property name="camera_offset_x" value="0.21" />
    <xacro:property name="camera_offset_y" value="0" />
    <xacro:property name="camera_offset_z" value="0.0715" />

    <mbot_base/>

    <!-- Camera -->
    <joint name="camera_joint" type="fixed">
        <origin xyz="${camera_offset_x} ${camera_offset_y} ${camera_offset_z}" rpy="0 0 0" />
        <parent link="base_link"/>
        <child link="camera_link"/>
    </joint>

    <xacro:usb_camera prefix="camera"/> 

    <mbot_base_gazebo/>

</robot>

查看摄像头仿真图像

rqt_image_view

ROS进阶---Gazebo物理仿真环境搭建