欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ARM-Linux驱动--RTC(实时时钟)驱动分析

程序员文章站 2024-02-22 18:53:04
...

硬件平台:FL2440(S3C2440)

内核版本:Linux 2.6.28

主机平台:Ubuntu 11.04

内核版本:Linux 2.6.39

交叉编译器版本:arm-linux-gcc 3.4.1

原创作品,转载请标明出处http://blog.csdn.net/yming0221/article/details/6584285

1、实时时钟概述

实时时钟(RTC)单元可以在断电的情况下使用纽扣电池继续计时工作。RTC使用STRB/LDRB ARM操作传输二进制码十进制数的8位数据给CPU。其中的数据包括秒、分、时、日期、天、月、年的时间信息。可以执行报警功能。

2、实时时钟操作

下面是RTC模块的电路图

ARM-Linux驱动--RTC(实时时钟)驱动分析

3、RTC寄存器介绍

实时时钟控制寄存器(RTCCON)-REAL TIME CLOCK CONTROL REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

ARM-Linux驱动--RTC(实时时钟)驱动分析

节拍时间计数寄存器(TICNT)-TICK TIME COUNT REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

RTC报警控制寄存器(RTCALM)-RTC ALARM CONTROL REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

报警秒数寄存器(ALMSEC)-ALARM SECOND DATA REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

报警分钟计数寄存器(ALMMIN)-ALARM MIN DATA REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

报警小时数据寄存器(ALMHOUR)-ALARM HOUR DATA REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

报警日期数据寄存器(ALMDATE)-ALARM DATE DATA REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

报警月数数据寄存器(ALMMON)-ALARM MON DATA REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

报警年数数据寄存器(ALMYEAR)-ALARM YEAR DATA REGISTER

ARM-Linux驱动--RTC(实时时钟)驱动分析

BCD数据寄存器的格式和报警寄存器结构相同,只是对应的地址不同。

BCD秒寄存器(BCDSEC)-BCD SECOND REGISTER 地址:0x57000070(L)0x57000073(B)

BCD分寄存器(BCDMIN)-BCD MINUTE REGISTER 地址:0x57000074(L)0x57000077(B)

BCD小时寄存器(BCDHOUR)-BCD HOUR REGISTER 地址:0x57000078(L)0x5700007B(B)

BCD日期寄存器(BCDDATE)-BCD DATE REGISTER 地址:0x5700007C(L)0x5700007F(B)

BCD日寄存器(BCDDAY)-BCD DAY REGISTER 地址:0x57000080(L)0x57000083(B)

BCD月寄存器(BCDMON)-BCD MONTH REGISTER 地址:0x57000084(L)0x57000087(B)

BCD年寄存器(BCDYEAR)-BCD YEAR REGISTER 地址:0x57000088(L)0x5700008B(B)

4、驱动实例分析

为了使驱动更容易理解,现在这个RTC驱动只完成了计时功能,没有添加相应的报警功能,也没有添加电源管理的功能,缺少的功能今后完善。

下面先总体了解驱动:

首先是RTC驱动的结构体,在/include/linux/platform_device.h中,如下

struct platform_driver {
	int (*probe)(struct platform_device *);
	int (*remove)(struct platform_device *);
	void (*shutdown)(struct platform_device *);
	int (*suspend)(struct platform_device *, pm_message_t state);
	int (*suspend_late)(struct platform_device *, pm_message_t state);
	int (*resume_early)(struct platform_device *);
	int (*resume)(struct platform_device *);
	struct pm_ext_ops *pm;
	struct device_driver driver;
};
驱动中定义对应的结构体

static struct platform_driver s3c2410_rtc_driver = {
	.probe		= s3c_rtc_probe,//RTC探测函数
	.remove		= __devexit_p(s3c_rtc_remove),//RTC移除函数
	.driver		= {
		.name	= "s3c2410-rtc",
		.owner	= THIS_MODULE,
	},
};
下面是驱动中驱动的初始化和退出函数

static int __init s3c_rtc_init(void)
{
	printk(banner);
	return platform_driver_register(&s3c2410_rtc_driver);
}

static void __exit s3c_rtc_exit(void)
{
	platform_driver_unregister(&s3c2410_rtc_driver);
}

platform_driver_register()和platform_driver_unregister()函数在/drivers/base/platform.c中实现的。

可以看出,platform_driver_register()函数的作用就是为platform_driver中的driver中的probe、remove等提供接口函数

int platform_driver_register(struct platform_driver *drv)
{
	drv->driver.bus = &platform_bus_type;
	if (drv->probe)
		drv->driver.probe = platform_drv_probe;
	if (drv->remove)
		drv->driver.remove = platform_drv_remove;
	if (drv->shutdown)
		drv->driver.shutdown = platform_drv_shutdown;
	if (drv->suspend)
		drv->driver.suspend = platform_drv_suspend;
	if (drv->resume)
		drv->driver.resume = platform_drv_resume;
	if (drv->pm)
		drv->driver.pm = &drv->pm->base;
	return driver_register(&drv->driver);//注册老的驱动
}
void platform_driver_unregister(struct platform_driver *drv)
{
	driver_unregister(&drv->driver);
}

接下来是RTC平台驱动探测函数s3c_rtc_probe,下面函数定义的时候使用了__devinit的作用是使编译器优化代码,将其放在和是的内存位置,减少内存占用和提高内核效率。

probe函数接收到plarform_device这个参数后,就需要从中提取出需要的信息。它一般会通过调用内核提供的platform_get_resource和platform_get_irq等函数来获得相关信息。如通过platform_get_resource获得设备的起始地址后,可以对其进行request_mem_region和ioremap等操作,以便应用程序对其进行操作。通过platform_get_irq得到设备的中断号以后,就可以调用request_irq函数来向系统申请中断。这些操作在设备驱动程序中一般都要完成。

static int __devinit s3c_rtc_probe(struct platform_device *pdev)
{
	struct rtc_device *rtc;//定义rtc_device结构体,定义在/include/linux/rtc.h
	struct resource *res;//定义资源结构体,定义在/include/linux/ioport.h
	int ret;

	pr_debug("%s: probe=%p\n", __func__, pdev);

	/* find the IRQs */

	s3c_rtc_tickno = platform_get_irq(pdev, 1);//在系统定义的平台设备中获取中断号
	if (s3c_rtc_tickno < 0) {//异常处理
		dev_err(&pdev->dev, "no irq for rtc tick\n");
		return -ENOENT;
	}

	/* get the memory region */

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);//获取RTC平台使用的IO资源
	if (res == NULL) {
		dev_err(&pdev->dev, "failed to get memory region resource\n");
		return -ENOENT;
	}
       //申请内存区域,res是struct resource类型,见本函数后面
	s3c_rtc_mem = request_mem_region(res->start,
					 res->end-res->start+1,
					 pdev->name);

	if (s3c_rtc_mem == NULL) {//申请内存出错
		dev_err(&pdev->dev, "failed to reserve memory region\n");
		ret = -ENOENT;
		goto err_nores;
	}
        //将寄存器地址映射成虚拟地址,以便访问
	s3c_rtc_base = ioremap(res->start, res->end - res->start + 1);
	if (s3c_rtc_base == NULL) {
		dev_err(&pdev->dev, "failed ioremap()\n");
		ret = -EINVAL;
		goto err_nomap;
	}

	/* check to see if everything is setup correctly */

	s3c_rtc_enable(pdev, 1);//对RTCCON寄存器设置,详情见下面的函数实现

 	pr_debug("s3c2410_rtc: RTCCON=%02x\n",
		 readb(s3c_rtc_base + S3C2410_RTCCON));

	s3c_rtc_setfreq(&pdev->dev, 1);//详情见下面的函数实现

	/* register RTC and exit */

	rtc = rtc_device_register("s3c", &pdev->dev, &s3c_rtcops,
				  THIS_MODULE);//注册RTC为RTC设备,其中s3c_rtcops定义见下

	if (IS_ERR(rtc)) {
		dev_err(&pdev->dev, "cannot attach rtc\n");
		ret = PTR_ERR(rtc);
		goto err_nortc;
	}

	rtc->max_user_freq = 128;//设置RTC节拍时间计数寄存器TICNT的节拍时间计数值的用户最大相对值
        //将RTC类的设备数据传递给系统设备,在/include/linux/platform_device.h中
       //#define platform_set_drvdata(_dev,data)	dev_set_drvdata(&(_dev)->dev, (data)),该函数在/include/linux/device.h中定义,见本函数下面
       platform_set_drvdata(pdev, rtc);
	return 0;
//异常处理
 err_nortc:
	s3c_rtc_enable(pdev, 0);
	iounmap(s3c_rtc_base);

 err_nomap:
	release_resource(s3c_rtc_mem);
 err_nores:
	return ret;
}
下面是/include/linux/ioport.h中struct resource结构体定义
struct resource {
	resource_size_t start;
	resource_size_t end;
	const char *name;
	unsigned long flags;
	struct resource *parent, *sibling, *child;
};
这是dev_set_drvdata()的函数定义:

static inline void dev_set_drvdata(struct device *dev, void *data)
{
	dev->driver_data = data;
}
接下来是在s3c_rtc_probe()函数用到的两个函数s3c_rtc_enable()和s3c_rtc_setfreq()

static void s3c_rtc_enable(struct platform_device *pdev, int en)
{
	void __iomem *base = s3c_rtc_base;//__iomem的作用就是为了使编译器更好的优化编译
	unsigned int tmp;

	if (s3c_rtc_base == NULL)
		return;
        //en作为参数传递过来如果en==0,关闭电源前的情况
	if (!en) {
		tmp = readb(base + S3C2410_RTCCON);
		writeb(tmp & ~S3C2410_RTCCON_RTCEN, base + S3C2410_RTCCON);//设置RTCCON寄存器,屏蔽RTC使能,可以参考数据手册中寄存器的相关定义

		tmp = readb(base + S3C2410_TICNT);
		writeb(tmp & ~S3C2410_TICNT_ENABLE, base + S3C2410_TICNT);//设置TICNT寄存器,屏蔽节拍时间中断使能
	} else {
		/* re-enable the device, and check it is ok */
                //en!=0的情况,表示系统复位,重新使能RTC驱动
		if ((readb(base+S3C2410_RTCCON) & S3C2410_RTCCON_RTCEN) == 0){//RTCCON第0位为0,将其设置为1,重新使能
			dev_info(&pdev->dev, "rtc disabled, re-enabling\n");

			tmp = readb(base + S3C2410_RTCCON);
			writeb(tmp|S3C2410_RTCCON_RTCEN, base+S3C2410_RTCCON);
		}

		if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CNTSEL)){
			dev_info(&pdev->dev, "removing RTCCON_CNTSEL\n");

			tmp = readb(base + S3C2410_RTCCON);
			writeb(tmp& ~S3C2410_RTCCON_CNTSEL, base+S3C2410_RTCCON);//设置RTCCON第2位为0,设置BCD计数为混合BCD计数
		}

		if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CLKRST)){
			dev_info(&pdev->dev, "removing RTCCON_CLKRST\n");

			tmp = readb(base + S3C2410_RTCCON);
			writeb(tmp & ~S3C2410_RTCCON_CLKRST, base+S3C2410_RTCCON);//RTC时钟计数器复位
		}
	}
}
static int s3c_rtc_setfreq(struct device *dev, int freq)//设定节拍时间计数值
{
	unsigned int tmp;

	spin_lock_irq(&s3c_rtc_pie_lock);//获取自旋锁,对资源互斥访问

	tmp = readb(s3c_rtc_base + S3C2410_TICNT) & S3C2410_TICNT_ENABLE;//节拍时间使能有效
	tmp |= (128 / freq)-1;

	writeb(tmp, s3c_rtc_base + S3C2410_TICNT);
	spin_unlock_irq(&s3c_rtc_pie_lock);//解锁

	return 0;
}
接下来是RTC设备类的操作。

下面是rtc_class_ops是RTC设备类在RTC驱动核心部分中定义的对RTC设备类进行操作的结构体,类似字符设备在驱动中的file_operations对字符设备进行操作的意思。该结构体被定义在rtc.h中,对RTC的操作主要有打开、关闭、设置或获取时间、设置或获取报警、设置节拍时间计数值等等,该结构体内接口函数的实现都在下面

static const struct rtc_class_ops s3c_rtcops = {
	.open		= s3c_rtc_open,
	.release	= s3c_rtc_release,
	.read_time	= s3c_rtc_gettime,
	.set_time	= s3c_rtc_settime,
	.irq_set_freq	= s3c_rtc_setfreq,
	.irq_set_state	= s3c_rtc_setpie,
};
RTC打开设备函数s3c_rtc_open()

static int s3c_rtc_open(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);//从平台设备中获取RTC设备类的数据
	struct rtc_device *rtc_dev = platform_get_drvdata(pdev);
	int ret;

	ret = request_irq(s3c_rtc_tickno, s3c_rtc_tickirq,
			  IRQF_DISABLED,  "s3c2410-rtc tick", rtc_dev);//申请中断

	if (ret) {
		dev_err(dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret);
		goto tick_err;
	}

 tick_err:
	return ret;
}
RTC TICK节拍时间中断服务程序

static irqreturn_t s3c_rtc_tickirq(int irq, void *id)
{
	struct rtc_device *rdev = id;

	rtc_update_irq(rdev, 1, RTC_PF | RTC_IRQF);
	return IRQ_HANDLED;
}
RTC关闭设备函数s3c_rtc_release()

static void s3c_rtc_release(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);//从平台设备中获取RTC设备类的数据

	struct rtc_device *rtc_dev = platform_get_drvdata(pdev);

	/* do not clear AIE here, it may be needed for wake */

	s3c_rtc_setpie(dev, 0);//函数定义见下面
	free_irq(s3c_rtc_tickno, rtc_dev);
}
s3c_rtc_setpie()函数,该函数主要作用就是根据参数设置TICNT寄存器的最高位,参数为0,禁止使能,参数为1,使能
static int s3c_rtc_setpie(struct device *dev, int enabled)
{
	unsigned int tmp;

	pr_debug("%s: pie=%d\n", __func__, enabled);

	spin_lock_irq(&s3c_rtc_pie_lock);
	tmp = readb(s3c_rtc_base + S3C2410_TICNT) & ~S3C2410_TICNT_ENABLE;//读取TICNT的值并将最高位清0

	if (enabled)
		tmp |= S3C2410_TICNT_ENABLE;

	writeb(tmp, s3c_rtc_base + S3C2410_TICNT);//写入计算后新的值
	spin_unlock_irq(&s3c_rtc_pie_lock);

	return 0;
}
下面两个函数是设置和读取BCD寄存器的时间,逻辑很简单,只是读取和设置相应寄存器的值

static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
{
	unsigned int have_retried = 0;
	void __iomem *base = s3c_rtc_base;

 retry_get_time:
	rtc_tm->tm_min  = readb(base + S3C2410_RTCMIN);
	rtc_tm->tm_hour = readb(base + S3C2410_RTCHOUR);
	rtc_tm->tm_mday = readb(base + S3C2410_RTCDATE);
	rtc_tm->tm_mon  = readb(base + S3C2410_RTCMON);
	rtc_tm->tm_year = readb(base + S3C2410_RTCYEAR);
	rtc_tm->tm_sec  = readb(base + S3C2410_RTCSEC);

	/* the only way to work out wether the system was mid-update
	 * when we read it is to check the second counter, and if it
	 * is zero, then we re-try the entire read
	 */

	if (rtc_tm->tm_sec == 0 && !have_retried) {
		have_retried = 1;
		goto retry_get_time;
	}

	pr_debug("read time %02x.%02x.%02x %02x/%02x/%02x\n",
		 rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday,
		 rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec);

	rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
	rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
	rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
	rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
	rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
	rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);

	rtc_tm->tm_year += 100;
	rtc_tm->tm_mon -= 1;

	return 0;
}

static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm)
{
	void __iomem *base = s3c_rtc_base;
	int year = tm->tm_year - 100;

	pr_debug("set time %02d.%02d.%02d %02d/%02d/%02d\n",
		 tm->tm_year, tm->tm_mon, tm->tm_mday,
		 tm->tm_hour, tm->tm_min, tm->tm_sec);

	/* we get around y2k by simply not supporting it */

	if (year < 0 || year >= 100) {
		dev_err(dev, "rtc only supports 100 years\n");
		return -EINVAL;
	}

	writeb(bin2bcd(tm->tm_sec),  base + S3C2410_RTCSEC);
	writeb(bin2bcd(tm->tm_min),  base + S3C2410_RTCMIN);
	writeb(bin2bcd(tm->tm_hour), base + S3C2410_RTCHOUR);
	writeb(bin2bcd(tm->tm_mday), base + S3C2410_RTCDATE);
	writeb(bin2bcd(tm->tm_mon + 1), base + S3C2410_RTCMON);
	writeb(bin2bcd(year), base + S3C2410_RTCYEAR);

	return 0;
}
到这里RTC驱动的计时功能实现,报警功能还没有完成。下面是这个驱动源代码

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/log2.h>

#include <mach/hardware.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/plat-s3c/regs-rtc.h>


static struct resource *s3c_rtc_mem;

static void __iomem *s3c_rtc_base;

static int s3c_rtc_tickno  = NO_IRQ;

static DEFINE_SPINLOCK(s3c_rtc_pie_lock);


static irqreturn_t s3c_rtc_tickirq(int irq, void *id)
{
	struct rtc_device *rdev = id;

	rtc_update_irq(rdev, 1, RTC_PF | RTC_IRQF);
	return IRQ_HANDLED;
}

/* Update control registers */
static void s3c_rtc_setaie(int to)
{
	unsigned int tmp;

	pr_debug("%s: aie=%d\n", __func__, to);

	tmp = readb(s3c_rtc_base + S3C2410_RTCALM) & ~S3C2410_RTCALM_ALMEN;

	if (to)
		tmp |= S3C2410_RTCALM_ALMEN;

	writeb(tmp, s3c_rtc_base + S3C2410_RTCALM);
}

static int s3c_rtc_setpie(struct device *dev, int enabled)
{
	unsigned int tmp;

	pr_debug("%s: pie=%d\n", __func__, enabled);

	spin_lock_irq(&s3c_rtc_pie_lock);
	tmp = readb(s3c_rtc_base + S3C2410_TICNT) & ~S3C2410_TICNT_ENABLE;

	if (enabled)
		tmp |= S3C2410_TICNT_ENABLE;

	writeb(tmp, s3c_rtc_base + S3C2410_TICNT);
	spin_unlock_irq(&s3c_rtc_pie_lock);

	return 0;
}

static int s3c_rtc_setfreq(struct device *dev, int freq)
{
	unsigned int tmp;

	spin_lock_irq(&s3c_rtc_pie_lock);

	tmp = readb(s3c_rtc_base + S3C2410_TICNT) & S3C2410_TICNT_ENABLE;
	tmp |= (128 / freq)-1;

	writeb(tmp, s3c_rtc_base + S3C2410_TICNT);
	spin_unlock_irq(&s3c_rtc_pie_lock);

	return 0;
}

/* Time read/write */

static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
{
	unsigned int have_retried = 0;
	void __iomem *base = s3c_rtc_base;

 retry_get_time:
	rtc_tm->tm_min  = readb(base + S3C2410_RTCMIN);
	rtc_tm->tm_hour = readb(base + S3C2410_RTCHOUR);
	rtc_tm->tm_mday = readb(base + S3C2410_RTCDATE);
	rtc_tm->tm_mon  = readb(base + S3C2410_RTCMON);
	rtc_tm->tm_year = readb(base + S3C2410_RTCYEAR);
	rtc_tm->tm_sec  = readb(base + S3C2410_RTCSEC);

	/* the only way to work out wether the system was mid-update
	 * when we read it is to check the second counter, and if it
	 * is zero, then we re-try the entire read
	 */

	if (rtc_tm->tm_sec == 0 && !have_retried) {
		have_retried = 1;
		goto retry_get_time;
	}

	pr_debug("read time %02x.%02x.%02x %02x/%02x/%02x\n",
		 rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday,
		 rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec);

	rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
	rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
	rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
	rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
	rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
	rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);

	rtc_tm->tm_year += 100;
	rtc_tm->tm_mon -= 1;

	return 0;
}

static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm)
{
	void __iomem *base = s3c_rtc_base;
	int year = tm->tm_year - 100;

	pr_debug("set time %02d.%02d.%02d %02d/%02d/%02d\n",
		 tm->tm_year, tm->tm_mon, tm->tm_mday,
		 tm->tm_hour, tm->tm_min, tm->tm_sec);

	/* we get around y2k by simply not supporting it */

	if (year < 0 || year >= 100) {
		dev_err(dev, "rtc only supports 100 years\n");
		return -EINVAL;
	}

	writeb(bin2bcd(tm->tm_sec),  base + S3C2410_RTCSEC);
	writeb(bin2bcd(tm->tm_min),  base + S3C2410_RTCMIN);
	writeb(bin2bcd(tm->tm_hour), base + S3C2410_RTCHOUR);
	writeb(bin2bcd(tm->tm_mday), base + S3C2410_RTCDATE);
	writeb(bin2bcd(tm->tm_mon + 1), base + S3C2410_RTCMON);
	writeb(bin2bcd(year), base + S3C2410_RTCYEAR);

	return 0;
}

static int s3c_rtc_open(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct rtc_device *rtc_dev = platform_get_drvdata(pdev);
	int ret;

	ret = request_irq(s3c_rtc_tickno, s3c_rtc_tickirq,
			  IRQF_DISABLED,  "s3c2410-rtc tick", rtc_dev);

	if (ret) {
		dev_err(dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret);
		goto tick_err;
	}

 tick_err:
	return ret;
}

static void s3c_rtc_release(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct rtc_device *rtc_dev = platform_get_drvdata(pdev);

	/* do not clear AIE here, it may be needed for wake */

	s3c_rtc_setpie(dev, 0);
	free_irq(s3c_rtc_tickno, rtc_dev);
}

static const struct rtc_class_ops s3c_rtcops = {
	.open		= s3c_rtc_open,
	.release	= s3c_rtc_release,
	.read_time	= s3c_rtc_gettime,
	.set_time	= s3c_rtc_settime,
	.irq_set_freq	= s3c_rtc_setfreq,
	.irq_set_state	= s3c_rtc_setpie,
};

static void s3c_rtc_enable(struct platform_device *pdev, int en)
{
	void __iomem *base = s3c_rtc_base;
	unsigned int tmp;

	if (s3c_rtc_base == NULL)
		return;

	if (!en) {
		tmp = readb(base + S3C2410_RTCCON);
		writeb(tmp & ~S3C2410_RTCCON_RTCEN, base + S3C2410_RTCCON);

		tmp = readb(base + S3C2410_TICNT);
		writeb(tmp & ~S3C2410_TICNT_ENABLE, base + S3C2410_TICNT);
	} else {
		/* re-enable the device, and check it is ok */

		if ((readb(base+S3C2410_RTCCON) & S3C2410_RTCCON_RTCEN) == 0){
			dev_info(&pdev->dev, "rtc disabled, re-enabling\n");

			tmp = readb(base + S3C2410_RTCCON);
			writeb(tmp|S3C2410_RTCCON_RTCEN, base+S3C2410_RTCCON);
		}

		if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CNTSEL)){
			dev_info(&pdev->dev, "removing RTCCON_CNTSEL\n");

			tmp = readb(base + S3C2410_RTCCON);
			writeb(tmp& ~S3C2410_RTCCON_CNTSEL, base+S3C2410_RTCCON);
		}

		if ((readb(base + S3C2410_RTCCON) & S3C2410_RTCCON_CLKRST)){
			dev_info(&pdev->dev, "removing RTCCON_CLKRST\n");

			tmp = readb(base + S3C2410_RTCCON);
			writeb(tmp & ~S3C2410_RTCCON_CLKRST, base+S3C2410_RTCCON);
		}
	}
}

static int __devexit s3c_rtc_remove(struct platform_device *dev)
{
	struct rtc_device *rtc = platform_get_drvdata(dev);

	platform_set_drvdata(dev, NULL);
	rtc_device_unregister(rtc);

	s3c_rtc_setpie(&dev->dev, 0);
	s3c_rtc_setaie(0);

	iounmap(s3c_rtc_base);
	release_resource(s3c_rtc_mem);
	kfree(s3c_rtc_mem);

	return 0;
}

static int __devinit s3c_rtc_probe(struct platform_device *pdev)
{
	struct rtc_device *rtc;
	struct resource *res;
	int ret;

	pr_debug("%s: probe=%p\n", __func__, pdev);

	/* find the IRQs */

	s3c_rtc_tickno = platform_get_irq(pdev, 1);
	if (s3c_rtc_tickno < 0) {
		dev_err(&pdev->dev, "no irq for rtc tick\n");
		return -ENOENT;
	}

	/* get the memory region */

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res == NULL) {
		dev_err(&pdev->dev, "failed to get memory region resource\n");
		return -ENOENT;
	}

	s3c_rtc_mem = request_mem_region(res->start,
					 res->end-res->start+1,
					 pdev->name);

	if (s3c_rtc_mem == NULL) {
		dev_err(&pdev->dev, "failed to reserve memory region\n");
		ret = -ENOENT;
		goto err_nores;
	}

	s3c_rtc_base = ioremap(res->start, res->end - res->start + 1);
	if (s3c_rtc_base == NULL) {
		dev_err(&pdev->dev, "failed ioremap()\n");
		ret = -EINVAL;
		goto err_nomap;
	}

	/* check to see if everything is setup correctly */

	s3c_rtc_enable(pdev, 1);

 	pr_debug("s3c2410_rtc: RTCCON=%02x\n",
		 readb(s3c_rtc_base + S3C2410_RTCCON));

	s3c_rtc_setfreq(&pdev->dev, 1);

	/* register RTC and exit */

	rtc = rtc_device_register("s3c", &pdev->dev, &s3c_rtcops,
				  THIS_MODULE);

	if (IS_ERR(rtc)) {
		dev_err(&pdev->dev, "cannot attach rtc\n");
		ret = PTR_ERR(rtc);
		goto err_nortc;
	}

	rtc->max_user_freq = 128;

	platform_set_drvdata(pdev, rtc);
	return 0;

 err_nortc:
	s3c_rtc_enable(pdev, 0);
	iounmap(s3c_rtc_base);

 err_nomap:
	release_resource(s3c_rtc_mem);
 err_nores:
	return ret;
}

static struct platform_driver s3c2410_rtc_driver = {
	.probe		= s3c_rtc_probe,
	.remove		= __devexit_p(s3c_rtc_remove),
	.driver		= {
		.name	= "s3c2410-rtc",
		.owner	= THIS_MODULE,
	},
};

static char __initdata banner[] = "S3C24XX RTC, (c) 2004,2006 Simtec Electronics\n";

static int __init s3c_rtc_init(void)
{
	printk(banner);
	return platform_driver_register(&s3c2410_rtc_driver);
}

static void __exit s3c_rtc_exit(void)
{
	platform_driver_unregister(&s3c2410_rtc_driver);
}

module_init(s3c_rtc_init);
module_exit(s3c_rtc_exit);

MODULE_DESCRIPTION("My s3c2440 RTC Driver");
MODULE_AUTHOR("YanMing - aaa@qq.com");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c2410-rtc");

Makefile文件

obj-m := rtc.o
KERNELDIR ?= /arm/linux-2.6.28.7-2440
PWD := $(shell pwd)
default:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
clean:
	rm -f *.o *.ko *.order *.symvers

make后在目录下生成rtc.ko驱动,利用NFS挂在到目标板,insmod rtc.ko驱动就可以加载,执行hwclock命令,查看是否可以读取硬件的RTC。