欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【STM32】输入捕获程序

程序员文章站 2024-02-22 18:40:40
...

00. 目录

01. 概述

输入捕获模式可以用来测量脉冲宽度或者测量频率。我们以测量脉宽为例,用一个简图来说明输入捕获的原理。
【STM32】输入捕获程序

如图所示,就是输入捕获测量高电平脉宽的原理,假定定时器工作在向上计数模式,图中 t1~t2 时间,就是我们需要测量的高电平时间。测量方法如下:首先设置定时器通道 x 为上升沿捕获,这样,t1 时刻,就会捕获到当前的 CNT 值,然后立即清零 CNT,并设置通道 x为下降沿捕获,这样到 t2 时刻,又会发生捕获事件,得到此时的 CNT 值,记为 CCRx2。这样,根据定时器的计数频率,我们就可以算出t1~t2 的时间,从而得到高电平脉宽。

在 t1~t2 之间,可能产生 N 次定时器溢出,这就要求我们对定时器溢出,做处理,防止高电平太长,导致数据不准确。如图15.1.1所示,t1~t2之间,CNT计数的次数等于:N*ARR+CCRx2,有了这个计数次数,再乘以 CNT 的计数周期,即可得到 t2-t1 的时间长度,即高电平持续时间。

STM32F4 的定时器,除了 TIM6 和 TIM7,其他定时器都有输入捕获功能。STM32F4 的输入捕获,简单的说就是通过检测 TIMx_CHx 上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的通道的捕获/比较寄存器(TIMx_CCRx)里面,完成一次捕获。同时还可以配置捕获时是否触发中断/DMA 等。

02. 硬件设计

本实验用到的硬件资源有:
1) 指示灯 DS0
2) KEY_UP 按键
3) 串口
4) 定时器 TIM3
5) 定时器 TIM5
我们将捕获 TIM5_CH1(PA0)上的高电平脉宽,通过 KEY_UP 按键输入高电平,并从串口打印高电平脉宽。

03. 寄存器概述

我们介绍我们本章需要用到的一些寄存器配置,需要用到的寄存器有:TIMx_ARR、TIMx_PSC、TIMx_CCMR1、TIMx_CCER、TIMx_DIER、TIMx_CR1、TIMx_CCR1 这些寄存器在前面全部都有提到(这里的 x=5),我们这里就不再全部罗列了,我们这里针对性的介绍这几个寄存器的配置。

TIMx_ARR 和 TIMx_PSC,这两个寄存器用来设自动重装载值和 TIMx 的时钟分频。

TIMx 捕获/ 比较模式寄存器 1 (TIMx_CCMR1)

TIMx capture/compare mode register 1
偏移地址:0x18
复位值:0x0000

这些通道可用于输入(捕获模式)或输出(比较模式)模式。通道方向通过配置相应的 CCxS位进行定义。此寄存器的所有其它位在输入模式和输出模式下的功能均不同。对于任一给定位,OCxx 用于说明通道配置为输出时该位对应的功能,ICxx 则用于说明通道配置为输入时该位对应的功能。因此,必须注意同一个位在输入阶段和输出阶段具有不同的含义。
【STM32】输入捕获程序

这里我们用到的是 TIM5 的捕获/比较通道 1,我们重点介绍 TIMx_CCMR1 的[7:0]位(其高 8 位配置类似)
【STM32】输入捕获程序

TIMx 捕获/ 比较使能寄存器 (TIMx_CCER)

TIMx capture/compare enable register
偏移地址:0x20
复位值:0x0000
【STM32】输入捕获程序

我们要用到这个寄存器的最低 2 位,CC1E 和 CC1P 位。

位 1 CC1P: 捕获 / 比较 1 输出极性 (Capture/Compare 1 output Polarity) 。
CC1 通道配置为输出:
0:OC1 高电平有效
1:OC1 低电平有效
CC1 通道配置为输入:
CC1NP/CC1P 位可针对触发或捕获操作选择 TI1FP1 和 TI2FP1 的极性。
00:非反相/上升沿触发
电路对 TIxFP1 上升沿敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操作), TIxFP1 未反相 (在门控模式或编码器模式下执行触发操作)。
01:反相/下降沿触发
电路对 TIxFP1 下降沿敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操作), TIxFP1 反相 (在门控模式或编码器模式下执行触发操作)。
10:保留,不使用此配置。
11:非反相/上升沿和下降沿均触发
电路对 TIxFP1 上升沿和下降沿都敏感(在复位模式、外部时钟模式或触发模式下执行捕获或触发操作),TIxFP1 未反相(在门控模式下执行触发操作)。编码器模式下不得使用此配置。

位 0 CC1E: 捕获 / 比较 1 输出使能 (Capture/Compare 1 output enable) 。
CC1 通道配置为输出:
0:关闭––OC1 未**
1:开启––在相应输出引脚上输出 OC1 信号
CC1 通道配置为输入:
此位决定了是否可以实际将计数器值捕获到输入捕获/比较寄存器 1 (TIMx_CCR1) 中。
0:禁止捕获
1:使能捕获

TIMx DMA/ 中断使能寄存器 (TIMx_DIER)

TIMx DMA/Interrupt enable register
偏移地址:0x0C
复位值:0x0000
【STM32】输入捕获程序

我们需要用到中断来处理捕获数据,所以必须开启通道 1 的捕获比较中断,即 CC1IE 设置为 1。

TIMx 控制寄存器 1 (TIMx_CR1)

TIMx control register 1
偏移地址:0x00
复位值:0x0000
【STM32】输入捕获程序

控制寄存器:TIMx_CR1,我们只用到了它的最低位,也就是用来使能定时器的。

TIMx 捕获/ 比较寄存器 1 (TIMx_CCR1)

TIMx capture/compare register 1
偏移地址:0x34
复位值:0x0000 0000

【STM32】输入捕获程序

TIMx_CCR1,该寄存器用来存储捕获发生时,TIMx_CNT的值,我们从 TIMx_CCR1 就可以读出通道 1 捕获发生时刻的 TIMx_CNT 值,通过两次捕获(一次上升沿捕获,一次下降沿捕获)的差值,就可以计算出高电平脉冲的宽度(注意,对于脉宽太长的情况,还要计算定时器溢出的次数)。

04. 配置步骤

4.1开启 TIM5 时钟,配置 PA0 为 为 复用功能(AF2 ),并开启下拉电阻。

要使用 TIM5,我们必须先开启 TIM5 的时钟。同时我们要捕获 TIM5_CH1 上面的高电平脉宽,所以先配置 PA0 为带下拉的复用功能,同时,为了让 PA0 的复用功能选择连接到 TIM5,所以设置 PA0 的复用功能为 AF,即连接到 TIM5 上面。开启 TIM5 时钟的方法为:

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE); //TIM5 时钟使能

配置 PA0 为复用功能,所以我们首先要设置 PA0 引脚映射 AF2,方法为:

GPIO_PinAFConfig(GPIOA,GPIO_PinSource0,GPIO_AF_TIM5); //GPIOA0 复用位定时器 5

最后,我们还要初始化 GPIO 的模式为复用功能,同时这里我们还要设置为开启下拉。方法为:

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //GPIOA0
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;  //速度 100MHz
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN; //下拉
GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化 PA0

这里我们使用的是定时器 5 的通道 1,所以我们从 STM32F4 对应的数据手册可以查看到对应的 IO 口为 PA0:

【STM32】输入捕获程序

4.2 初始化TIM5, 设置 TIM5 的 的 ARR 和 PSC 。

在开启了 TIM5 的时钟之后,我们要设置 ARR 和 PSC 两个寄存器的值来设置输入捕获的自动重装载值和计数频率。这在库函数中是通过 TIM_TimeBaseInit 函数实现的。

TIM_TimeBaseStructure.TIM_Prescaler=psc; //定时器分频
TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
TIM_TimeBaseStructure.TIM_Period=arr; //自动重装载值
TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;
TIM_TimeBaseInit(TIM5,&TIM_TimeBaseStructure);//初始化 TIM5

4.3 设置 TIM5 的 的 输入捕获参数,开启输入捕获。

TIM5_CCMR1 寄存器控制着输入捕获 1 和 2 的模式,包括映射关系,滤波和分频等。这里我们需要设置通道 1 为输入模式,且 IC1 映射到 TI1(通道 1)上面,并且不使用滤波(提高响应速度)器。库函数是通过 TIM_ICInit 函数来初始化输入比较参数的:

void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)

我们来看看参数设置结构体 TIM_ICInitTypeDef 的定义:

typedef struct
{
    uint16_t TIM_Channel; //通道
    uint16_t TIM_ICPolarity; //捕获极性
    uint16_t TIM_ICSelection;//映射
    uint16_t TIM_ICPrescaler;//分频系数
    uint16_t TIM_ICFilter; //滤波器长度
} TIM_ICInitTypeDef;

参数 TIM_Channel 很好理解,用来设置通道。我们设置为通道 1,为 TIM_Channel_1。
参 数 TIM_ICPolarit 是 用 来 设 置 输 入 信 号 的 有 效 捕 获 极 性 , 这 里 我 们 设 置 为TIM_ICPolarity_Rising,上升沿捕获。同时库函数还提供了单独设置通道 1 捕获极性的函数为:

TIM_OC1PolarityConfig(TIM5,TIM_ICPolarity_Falling);

参数 TIM_ICSelection 是用来设置映射关系,我们配置 IC1 直接映射在 TI1 上,选择TIM_ICSelection_DirectTI。
参 数 TIM_ICPrescaler 用 来 设 置 输 入 捕 获 分 频 系 数 , 我 们 这 里 不 分 频 , 所 以 选 中TIM_ICPSC_DIV1,还有 2,4,8 分频可选。
参数 TIM_ICFilter 设置滤波器长度,这里我们不使用滤波器,所以设置为 0。

TIM5_ICInitStructure.TIM_Channel = TIM_Channel_1; //选择输入端 IC1 映射到 TI1 上
TIM5_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; //上升沿捕获
TIM5_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //映射到 TI1 上
TIM5_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;  //配置输入分频,不分频
TIM5_ICInitStructure.TIM_ICFilter = 0x00;//IC1F=0000 配置输入滤波器 不滤波
TIM_ICInit(TIM5, &TIM5_ICInitStructure);

4.4 使能捕获和更新中断(设置 TIM5 的 DIER 寄存器)
因为我们要捕获的是高电平信号的脉宽,所以,第一次捕获是上升沿,第二次捕获时下降沿,必须在捕获上升沿之后,设置捕获边沿为下降沿,同时,如果脉宽比较长,那么定时器就会溢出,对溢出必须做处理,否则结果就不准了,不过,由于 STM32F4 的 TIM5 是 32 位定时器,假设计数周期为 1us,那么需要 4294 秒才会溢出一次,这基本上是不可能的。这两件事,我们都在中断里面做,所以必须开启捕获中断和更新中断。

这里我们使用定时器的开中断函数 TIM_ITConfig 即可使能捕获和更新中断:

TIM_ITConfig( TIM5,TIM_IT_Update|TIM_IT_CC1,ENABLE);//允许更新中断和捕获中断

4.5 设置中断 优先级 ,编写中断服务函数

因为我们要使用到中断,所以我们在系统初始化之后,需要先设置中断优先级分组,这里方法跟我们前面讲解一致,调用 NVIC_PriorityGroupConfig()函数即可,我们系统默认设置都是分组 2。设置中断优先级的方法前面多次提到这里我们不做讲解,主要是通过函数 NVIC_Init()来完成。设置优先级完成后,我们还需要在中断函数里面完成数据处理和捕获设置等关键操作,从而实现高电平脉宽统计。在中断服务函数里面,跟以前的外部中断和定时器中断实验中一样,我们在中断开始的时候要进行中断类型判断,在中断结束的时候要清除中断标志位。使用到的函数在上面的实验已经讲解过,分别为 TIM_GetITStatus()函数和 TIM_ClearITPendingBit()函数。

if (TIM_GetITStatus(TIM5, TIM_IT_Update) != RESET){}//判断是否为更新中断
if (TIM_GetITStatus(TIM5, TIM_IT_CC1) != RESET){}//判断是否发生捕获事件
TIM_ClearITPendingBit(TIM5, TIM_IT_CC1|TIM_IT_Update);//清除中断和捕获标志位

我们还使用到了一个设置计数器值的函数为:

TIM_SetCounter(TIM5,0);

4.6 使能定时器(设置 TIM5 的 CR1 寄存器)
最后,必须打开定时器的计数器开关, 启动 TIM5 的计数器,开始输入捕获。

TIM_Cmd(TIM5,ENABLE ); //使能定时器 5

通过以上 6 步设置,定时器 5 的通道 1 就可以开始输入捕获了,同时因为还用到了串口输出结果,所以还需要配置一下串口。

05. 程序示例

pwm.h

#ifndef __PWM_H__
#define __PWM_H__

#include "sys.h"

void TIM14_PWM_Init(u16 arr, u16 psc);

void TIM5_CH1_Cap_Init(u32 arr,u16 psc);


#endif/*__PWM_H__*/


pwm.c

#include "pwm.h"

//初始化  AF9
void TIM14_PWM_Init(u16 arr, u16 psc)
{
	GPIO_InitTypeDef gpio_InitTypeDef;
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;
	
	TIM_OCInitTypeDef TIM_OCInitStruct;
	
	//使能GPIO时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
	
	//使能定时器时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14, ENABLE);
	
	//设置GPIO功能复用
	GPIO_PinAFConfig(GPIOF, GPIO_PinSource9, GPIO_AF_TIM14);
	
	//GPIO初始化
	gpio_InitTypeDef.GPIO_Pin = GPIO_Pin_9;
	gpio_InitTypeDef.GPIO_Mode = GPIO_Mode_AF;
	gpio_InitTypeDef.GPIO_Speed = GPIO_Speed_100MHz;
	gpio_InitTypeDef.GPIO_OType = GPIO_OType_PP;
	gpio_InitTypeDef.GPIO_PuPd = GPIO_PuPd_UP;
	GPIO_Init(GPIOF, &gpio_InitTypeDef);
	
	//时钟初始化
	TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStruct.TIM_Period = arr;
	TIM_TimeBaseInitStruct.TIM_Prescaler = psc;

	TIM_TimeBaseInit(TIM14, &TIM_TimeBaseInitStruct);
	
	TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1;
	TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;
	TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_Low;
	
	TIM_OC1Init(TIM14, &TIM_OCInitStruct);
	
	TIM_OC1PreloadConfig(TIM14, TIM_OCPreload_Enable);
	
	TIM_ARRPreloadConfig(TIM14, ENABLE);
	
	//使能定时器
	TIM_Cmd(TIM14, ENABLE);
	
}

//定时器5通道1输入捕获配置
//arr:自动重装值(TIM2,TIM5是32位的!!)
//psc:时钟预分频数
void TIM5_CH1_Cap_Init(u32 arr,u16 psc)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	
	
	TIM_ICInitTypeDef  TIM5_ICInitStructure;

	
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE);  	//TIM5时钟使能    
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); 	//使能PORTA时钟	
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //GPIOA0
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;	//速度100MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN; //下拉
	GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化PA0

	GPIO_PinAFConfig(GPIOA,GPIO_PinSource0,GPIO_AF_TIM5); //PA0复用位定时器5
  
	  
	TIM_TimeBaseStructure.TIM_Prescaler=psc;  //定时器分频
	TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
	TIM_TimeBaseStructure.TIM_Period=arr;   //自动重装载值
	TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; 
	
	TIM_TimeBaseInit(TIM5,&TIM_TimeBaseStructure);
	

	//初始化TIM5输入捕获参数
	TIM5_ICInitStructure.TIM_Channel = TIM_Channel_1; //CC1S=01 	选择输入端 IC1映射到TI1上
	TIM5_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;	//上升沿捕获
	TIM5_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //映射到TI1上
	TIM5_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;	 //配置输入分频,不分频 
	TIM5_ICInitStructure.TIM_ICFilter = 0x00;//IC1F=0000 配置输入滤波器 不滤波
	TIM_ICInit(TIM5, &TIM5_ICInitStructure);
		
	TIM_ITConfig(TIM5,TIM_IT_Update|TIM_IT_CC1,ENABLE);//允许更新中断 ,允许CC1IE捕获中断	
	
  TIM_Cmd(TIM5,ENABLE ); 	//使能定时器5

 
  NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2;//抢占优先级3
	NVIC_InitStructure.NVIC_IRQChannelSubPriority =0;		//子优先级3
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能
	NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器、
	
	
}
//捕获状态
//[7]:0,没有成功的捕获;1,成功捕获到一次.
//[6]:0,还没捕获到低电平;1,已经捕获到低电平了.
//[5:0]:捕获低电平后溢出的次数(对于32位定时器来说,1us计数器加1,溢出时间:4294秒)
u8  TIM5CH1_CAPTURE_STA=0;	//输入捕获状态		    				
u32	TIM5CH1_CAPTURE_VAL;	//输入捕获值(TIM2/TIM5是32位)
//定时器5中断服务程序	 
void TIM5_IRQHandler(void)
{ 		    

 	if((TIM5CH1_CAPTURE_STA&0X80)==0)//还未成功捕获	
	{
		if(TIM_GetITStatus(TIM5, TIM_IT_Update) != RESET)//溢出
		{	     
			if(TIM5CH1_CAPTURE_STA&0X40)//已经捕获到高电平了
			{
				if((TIM5CH1_CAPTURE_STA&0X3F)==0X3F)//高电平太长了
				{
					TIM5CH1_CAPTURE_STA|=0X80;		//标记成功捕获了一次
					TIM5CH1_CAPTURE_VAL=0XFFFFFFFF;
				}else TIM5CH1_CAPTURE_STA++;
			}	 
		}
		if(TIM_GetITStatus(TIM5, TIM_IT_CC1) != RESET)//捕获1发生捕获事件
		{	
			if(TIM5CH1_CAPTURE_STA&0X40)		//捕获到一个下降沿 		
			{	  			
				TIM5CH1_CAPTURE_STA|=0X80;		//标记成功捕获到一次高电平脉宽
			  TIM5CH1_CAPTURE_VAL=TIM_GetCapture1(TIM5);//获取当前的捕获值.
	 			TIM_OC1PolarityConfig(TIM5,TIM_ICPolarity_Rising); //CC1P=0 设置为上升沿捕获
			}else  								//还未开始,第一次捕获上升沿
			{
				TIM5CH1_CAPTURE_STA=0;			//清空
				TIM5CH1_CAPTURE_VAL=0;
				TIM5CH1_CAPTURE_STA|=0X40;		//标记捕获到了上升沿
				TIM_Cmd(TIM5,DISABLE ); 	//关闭定时器5
	 			TIM_SetCounter(TIM5,0);
	 			TIM_OC1PolarityConfig(TIM5,TIM_ICPolarity_Falling);		//CC1P=1 设置为下降沿捕获
				TIM_Cmd(TIM5,ENABLE ); 	//使能定时器5
			}		    
		}			     	    					   
 	}
	TIM_ClearITPendingBit(TIM5, TIM_IT_CC1|TIM_IT_Update); //清除中断标志位
}


main.c

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "led.h"
#include "beep.h"
#include "key.h"
#include "exti.h"
#include "iwdg.h"
#include "wwdg.h"
#include "timer.h"
#include "pwm.h"

extern u8  TIM5CH1_CAPTURE_STA;		//输入捕获状态		    				
extern u32	TIM5CH1_CAPTURE_VAL;	//输入捕获值  
  
	
int main(void)
{ 
	long long temp=0;  
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置系统中断优先级分组2
	delay_init(168);  //初始化延时函数
	uart_init(115200);//初始化串口波特率为115200
 
 	TIM5_CH1_Cap_Init(0XFFFFFFFF,84-1); //以1Mhz的频率计数 
   	while(1)
	{
 		delay_ms(10);
			 
 		if(TIM5CH1_CAPTURE_STA&0X80)        //成功捕获到了一次高电平
		{
			temp=TIM5CH1_CAPTURE_STA&0X3F; 
			temp*=0XFFFFFFFF;		 		         //溢出时间总和
			temp+=TIM5CH1_CAPTURE_VAL;		   //得到总的高电平时间
			printf("HIGH:%lld us\r\n",temp); //打印总的高点平时间
			TIM5CH1_CAPTURE_STA=0;			     //开启下一次捕获
		}
	}
}


结果验证

打开串口调试助手,选择对应的串口,然后按 KEY_UP 按键,可以看到串口打印的高电平持续时间

06. 附录

6.1 【STM32】STM32系列教程汇总

网址:【STM32】STM32系列教程汇总

07. 声明

该教程参考了正点原子的《STM32 F4 开发指南》