提交官方MapReduce作业到YARN
程序员文章站
2024-02-22 12:11:53
...
环境
Hadoop使用版本:hadoop-2.6.0-cdh5.15.1
使用官方提供的例子 PI
在hadoop-2.6.0-cdh5.15.1/share/hadoop/mapreduce
路径下有一个hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar
文件
运行命令:hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar pi 2 3
然后在浏览器中输入yarn的地址:ip:8088
,在RUNNING下可以看到运行的作业:
查看控制台输出:
aaa@qq.com:~/app/hadoop-2.6.0-cdh5.15.1/share/hadoop/mapreduce$ hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar pi 2 3
Number of Maps = 2
Samples per Map = 3
19/11/07 15:52:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
19/11/07 15:52:38 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
19/11/07 15:52:39 INFO input.FileInputFormat: Total input paths to process : 2
19/11/07 15:52:39 INFO mapreduce.JobSubmitter: number of splits:2
19/11/07 15:52:39 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1573113153178_0001
19/11/07 15:52:40 INFO impl.YarnClientImpl: Submitted application application_1573113153178_0001
19/11/07 15:52:40 INFO mapreduce.Job: The url to track the job: http://swarm-worker1:8088/proxy/application_1573113153178_0001/
19/11/07 15:52:40 INFO mapreduce.Job: Running job: job_1573113153178_0001
19/11/07 15:52:48 INFO mapreduce.Job: Job job_1573113153178_0001 running in uber mode : false
19/11/07 15:52:48 INFO mapreduce.Job: map 0% reduce 0%
19/11/07 15:52:54 INFO mapreduce.Job: map 50% reduce 0%
19/11/07 15:52:55 INFO mapreduce.Job: map 100% reduce 0%
19/11/07 15:53:00 INFO mapreduce.Job: map 100% reduce 100%
19/11/07 15:53:00 INFO mapreduce.Job: Job job_1573113153178_0001 completed successfully
19/11/07 15:53:00 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=50
FILE: Number of bytes written=430365
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=540
HDFS: Number of bytes written=215
HDFS: Number of read operations=11
HDFS: Number of large read operations=0
HDFS: Number of write operations=3
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=6933
Total time spent by all reduces in occupied slots (ms)=3732
Total time spent by all map tasks (ms)=6933
Total time spent by all reduce tasks (ms)=3732
Total vcore-milliseconds taken by all map tasks=6933
Total vcore-milliseconds taken by all reduce tasks=3732
Total megabyte-milliseconds taken by all map tasks=7099392
Total megabyte-milliseconds taken by all reduce tasks=3821568
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=36
Map output materialized bytes=56
Input split bytes=304
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=56
Reduce input records=4
Reduce output records=0
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=308
CPU time spent (ms)=2610
Physical memory (bytes) snapshot=942092288
Virtual memory (bytes) snapshot=7986814976
Total committed heap usage (bytes)=1810890752
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=236
File Output Format Counters
Bytes Written=97
Job Finished in 21.985 seconds
Estimated value of Pi is 4.00000000000000000000
刚开始会执行Connecting to ResourceManager at /0.0.0.0:8032
,首先连接到ResourceManager中。这就是一个最简单的YARN作业
使用官方提供的例子 wordcount
在与上面同样的路径下执行命令:aaa@qq.com:~/app/hadoop-2.6.0-cdh5.15.1/share/hadoop/mapreduce$ hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.1.jar wordcount /wc/input/test.txt /wc/output
在/wc/output/下可以看到输出结果的文件:
aaa@qq.com:~/app/hadoop-2.6.0-cdh5.15.1/share/hadoop/mapreduce$ hadoop fs -text /wc/output/part-r-00000
19/11/07 16:26:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Hello 1
haha 2
hello 3
meme 1
welcome 2
world 1
推荐阅读
-
提交官方MapReduce作业到YARN
-
hadoop详细笔记(十七) 将MapReduce程序提交到Yarn上运行
-
Java --本地提交MapReduce作业至集群☞实现 Word Count
-
Java --本地提交MapReduce作业至集群☞实现 Word Count
-
记Spark提交任务到Yarn错误汇总
-
SparkLauncher提交jar任务到spark-yarn
-
idea以yarn-client 提交任务到yarn
-
【Spark实战】慕课网日志分析(四):将数据清洗的作业提交到YARN上运行
-
MapReduce作业提交到YARN上运行的步骤
-
在Idea以yarn-cluster/client方式提交spark程序到yarn上