欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

图像的变换(PIL,Numpy)

程序员文章站 2024-02-17 13:55:52
...
from  PIL import Image
import numpy as np
a = np.array(Image.open("fcity.jpg"))
print(a.shape, a.dtype)
b = [255, 255, 255] - a
im = Image.fromarray(b.astype('uint8'))
im.save("a.jpg")

原图:
图像的变换(PIL,Numpy)变化过的图片
图像的变换(PIL,Numpy)

from  PIL import Image
import numpy as np
a = np.array(Image.open("fcity.jpg").convert('L'))
print(a.shape, a.dtype)
b = 255 - a
im = Image.fromarray(b.astype('uint8'))
im.save("b.jpg")

变化过的图:
图像的变换(PIL,Numpy)

from  PIL import Image
import numpy as np
a = np.array(Image.open("fcity.jpg").convert('L'))
print(a.shape, a.dtype)
b = (100/255)*a + 150  #区间变换
im = Image.fromarray(b.astype('uint8'))
im.save("b.jpg")

变化结果:
图像的变换(PIL,Numpy)

from  PIL import Image
import numpy as np
a = np.array(Image.open("fcity.jpg").convert('L'))
print(a.shape, a.dtype)
b = 255*(a /255) + 150  #像素的平方
im = Image.fromarray(b.astype('uint8'))
im.save("b.jpg")

结果:
图像的变换(PIL,Numpy)
图像的手绘:

from PIL import Image
import numpy as np

a = np.asarray(Image.open('fcity.jpg').convert('L')).astype('float')
depath = 10.   # (0-100)
grad = np.gradient(a)  #取图像灰度的梯度值
grad_x,grad_y = grad  #分别取横纵图像梯度值
grad_x = grad_x * depath/100.
grad_y = grad_y * depath/100.
A = np.sqrt(grad_x ** 2 + grad_y ** 2 +1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1. /A

vec_el = np.pi/2.2  # 光源的俯视角度,弧度值
vec_az = np.pi/4  # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az)   #光源对y 轴的影响
dz = np.sin(vec_el)         #光源对z 轴的影响

b = 255 * (dx*uni_x + dy*uni_y + dz *uni_z)  	#光源归一化
b = b.clip(0, 255)

im = Image.fromarray(b.astype('uint8'))   #重构图像
im.save('c.jpg')

结果:
图像的变换(PIL,Numpy)

相关标签: Numpy PIL