什么是决策树:
,
,
,
,
,
朝着信息熵降低的方向,即让系统变得更加确定
def split(X,y,d,value): # 每个节点上的维度d,相应的阈值:value
index_a=(X[:,d]<=value)
index_b=(X[:,d]>value)
return X[index_a],X[index_b],y[index_a],y[index_b]
from collections import Counter
from math import log
def entropy(y):
counter = Counter(y)
res = 0.0
for num in counter.values():
p = num / len(y)
res += -p * log(p)
return res
def try_split(X, y):
best_entropy = float('inf')
best_d, best_v = -1, -1
for d in range(X.shape[1]): # shape[0]代表有多少行,shape[1]代表有多少列
sorted_index = np.argsort(X[:, d])
for i in range(1, len(X)):
if X[sorted_index[i - 1], d] != X[sorted_index[i], d]:
v = (X[sorted_index[i - 1], d] + X[sorted_index[i], d]) / 2
X_l, X_r, y_l, y_r = split(X, y, d, v)
e = entropy(y_l) + entropy(y_r)
if e < best_entropy:
best_entropy, best_d, best_v = e, d, v
return best_entropy, best_d, best_v
best_entropy, best_d, best_v=try_split(X,y)
print("best_entropy=",best_entropy)
print("best_d=",best_d)
print("best_v=",best_v)
基尼系数:越高数据的不确定性越强,和信息熵类似
,
按二分类 的思想:一类是x,另一类是(1-x)
此时:
,
scikit-learn中默认使用基尼系数!
,
,
,
,
局限性:决策边界和坐标轴平行,导致决策边界成了这样
而真正合理的是这样的:
更严重的是:
,