欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python科学计算之NumPy入门教程

程序员文章站 2024-02-16 12:51:58
前言 NumPy是Python用于处理大型矩阵的一个速度极快的数学库。它允许你在Python中做向量和矩阵的运算,而且很多底层的函数都是用C写的,你将获得在普通Pyt...

前言

NumPy是Python用于处理大型矩阵的一个速度极快的数学库。它允许你在Python中做向量和矩阵的运算,而且很多底层的函数都是用C写的,你将获得在普通Python中无法达到的运行速度。这是由于矩阵中每个元素的数据类型都是一样的,这也就减少了运算过程中的类型检测。

矩阵基础

在 numpy 包中我们用数组来表示向量,矩阵和高阶数据结构。他们就由数组构成,一维就用一个数组表示,二维就是数组中包含数组表示。

创建

# coding: utf-8
import numpy as np

a = np.array([
 [1.73, 1.68, 1.71, 4],
 [1, 2, 3, 4],
 [1, 2, 3, 4]
])
print type(a) # <type 'numpy.ndarray'>

ndarray (N-dimensional array object) 意思就是n维数组。例子中就表示一个3行4列的二维数组。

形状

数组的大小可以通过其 shape 属性获得:

print a.shape # (3L,4L)

数组的元素数量可以通过 ndarray.size 得到:

print a.size # 12

使用 ndarray 的 dtype 属性我们能获得数组元素的类型:

print a.dtype # float64

可以用过 shape 重新设置矩阵的形状或者通过 reshape 方法创建一个改变了尺寸的新数组,原数组的shape保持不变:

a.shape = 4, 3
b = a.reshape((2, 6))
# 尽管b的形状是新的,但是a和b是共享数据存储内存区域的,如果b[0][1] = 8 那么a[0][1] 也会是8

数组生成

可以用过 np.arange 来创建数组,参数与range类似:

x = np.arange(0, 10, 1) # arguments: start, stop, step

也可以用 np.linspace 创建等差数列:

x = np.linspace(1, 10, 5) # arguments: start, stop, num元素个数
# [ 1. 3.25 5.5 7.75 10. ]

# np.logspace 是创建等比数列

矩阵运算

计算将变量直接参与运算符,操作符优先级不变:

a = np.random.rand(5, 5)
b = np.random.rand(5, 5)

print a + b
print a - b
print a * b
print a / b
print a ** 2
print a < b
print a > b

一个数组中除了 dot() 函数,其他这些操作都是单元操作。

np_arr = np.array([2,3,34,5,5])
print np.mean(np_arr) # 平均数
print np.median(np_arr) # 中位数
print np.corrcoef(a[0], a[1]) # 判断两个轴的数据是否有相关性
print np.std(np_arr) # 标准差

数据提取

切片索引语法:M[lower:upper:step]

a = np.array([1,2,3,4,5])
a[1:3] # array([2, 3])

# 进行切片赋值时,原数组会被修改
a[1:3] = [-2, -3] # array([ 1, -2, -3, 4, 5])


b = np.random.rand(5, 5)
b[1:4, 1:4] # 提取 1~4 行,1~4列

b > 0.1 #array([False, False, False, ...])
# 因此要提取可以用, 这是利用了布尔屏蔽这个特性
b[ b > 0.1 ]

# where()函数是另一个有用的方式,当需要以特定条件来检索数组元素的时候。只需要传递给它一个条件,它将返回符合条件的元素列表。
c = np.where(b > 0.1)

矩阵运算

NumPy和Matlab不一样,对于多维数组的运算,缺省情况下并不使用矩阵运算,如果你希望对数组进行矩阵运算的话,可以调用相应的函数。

matrix对象

numpy库提供了matrix类,使用matrix类创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和matlab十分类似。但是由于NumPy中同时存在ndarray和matrix对象,因此用户很容易将两者弄混。这有违Python的“显式优于隐式”的原则,因此并不推荐在较复杂的程序中使用matrix。

>>> a = np.matrix([[1,2,3],[5,5,6],[7,9,9]])
>>> a*a**-1
matrix([[ 1.00000000e+00, 1.66533454e-16, -8.32667268e-17],
  [ -2.77555756e-16, 1.00000000e+00, -2.77555756e-17],
  [ 1.66533454e-16, 5.55111512e-17, 1.00000000e+00]])

从数组转换为矩阵可以用m = np.matrix(a) 进行转换, 使用 m.T 可以得到m的转置矩阵。

矩阵求逆

m.I * m
=> matrix([[ 1.00000000e+00+0.j, 4.44089210e-16+0.j],
   [ 0.00000000e+00+0.j, 1.00000000e+00+0.j]])

浅拷贝与深拷贝

为了获得高性能,Python 中的赋值常常不拷贝底层对象,这被称作浅拷贝。使用 copy 进行深拷贝:

b = copy(a)

遍历数组元素

通常情况下,我们是希望尽可能避免遍历数组元素的。因为迭代相比向量运算要慢的多。但是有些时候迭代又是不可避免的,这种情况下用 Python 的 for 是最方便的:

v = np.array([1,2,3,4])

for element in v:
 print(element)

M = np.array([[1,2], [3,4]])

for row in M:
 print("row", row)
 for element in row:
  print(element)

总结

以上就是关于Python科学计算之NumPy的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。