欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

决策树分类算法-ID3

程序员文章站 2024-02-15 09:40:52
...

 

实现的功能:

 1、对数值型数据和标称型数据 进行分类

 2、可将决策树pickle于txt文件中

但是本人在scikit_learn包中 暂时没成功处理标称型数据

trees.py

'''
Created on 2018年7月27日

@author: hcl
'''
from math import log
import operator
import numpy as np

def createDataSet():
    '''
    产生测试数据
    数据特征:[x1,x2,y] 两个特征 一个输出
    那么label 代表的是特征的名字
    '''
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    feature_names = ['no surfacing','flippers']    
    return dataSet, feature_names

def calcShannonEnt(dataSet):
    '''
    计算给定数据集的香农熵
    '''
    numEntries = len(dataSet)
    labelCounts = {}
    #统计每个类别出现的次数,保存在字典labelCounts中
    for featVec in dataSet: 
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1 #如果当前键值不存在,则扩展字典并将当前键值加入字典
    shannonEnt = 0.0
    for key in labelCounts:
        #使用所有类标签的发生频率计算类别出现的概率
        prob = float(labelCounts[key])/numEntries
        #用这个概率计算香农熵
        shannonEnt -= prob * log(prob,2) #取2为底的对数
    return shannonEnt

def splitDataSet(dataSet, axis, value):
    '''
    按照给定特征划分数据集
    dataSet:待划分的数据集
    axis:   划分数据集的第axis个特征
    value:  特征的返回值(比较值)
    '''
    retDataSet = []
    #遍历数据集中的每个元素,一旦发现符合要求的值,则将其添加到新创建的列表中
    for featVec in dataSet:
        if featVec[axis] == value:
            
            #下面两句代表去除了featVec[axis]
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            
            #再将去除后的值进行追加至新数据集
            retDataSet.append(reducedFeatVec)
    
    #返回去除 第axis特征值 = value 以后的数据集        
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
    '''
    选择最好的数据集划分方式
    输入:数据集
    输出:最优分类的特征的index
    '''
    #计算特征数量
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):
        #创建唯一的分类标签列表 取出第i列的特征集合 并做去重处理
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)

        #计算每种划分方式的信息熵
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy
        #计算最好的信息增益,即infoGain越大划分效果越好
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

def majorityCnt(classList):
    '''
    投票表决函数
    输入classList:标签集合,本例为:['yes', 'yes', 'no', 'no', 'no']
    输出:得票数最多的分类名称
    '''
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    #把分类结果进行排序,然后返回得票数最多的分类结果
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet,labels):
    '''
    创建树
    输入:数据集和标签列表 ;要对首次传入labels值时进行copy 因为后面出现了del(label)的操作,对原始数据有影响
    输出:树的所有信息
    '''
    
    # classList为数据集的所有类标签
    classList = [example[-1] for example in dataSet]
    # 停止条件1:所有类标签完全相同,直接返回该类标签 如果 第一个标签长的长度 == 总标签的长度  --》 标签完全相同
    if classList.count(classList[0]) == len(classList): 
        return classList[0]
    # 停止条件2:遍历完所有特征时仍不能将数据集划分成仅包含唯一类别的分组,则返回出现次数最多的类标签

    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    # 选择最优分类特征
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatName = labels[bestFeat]

    # myTree存储树的所有信息
    myTree = {bestFeatName:{}}
    # 以下得到列表包含的所有属性值 
    del(labels[bestFeat])  
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    #遍历当前选择特征包含的所有属性值
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatName][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree

def classify(inputTree,feature_names,testVec):
    '''
    决策树的分类函数
    inputTree:训练好的树信息
    feature_names:标签列表
    testVec:测试向量
    '''
    # 在2.7中,找到key所对应的第一个元素为:firstStr = myTree.keys()[0],
    # 这在3.4中运行会报错:‘dict_keys‘ object does not support indexing,这是因为python3改变了dict.keys,
    # 返回的是dict_keys对象,支持iterable 但不支持indexable,
    # 我们可以将其明确的转化成list,则此项功能在3中应这样实现:
    firstSides = list(inputTree.keys()) #['no surfacing'] ; ['flippers']
    firstStr = firstSides[0]            #no surfacing     ; flippers
    secondDict = inputTree[firstStr]    #{0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}  ; {0: 'no', 1: 'yes'}
    # 将标签字符串转换成索引
    featIndex = feature_names.index(firstStr)  # 0; 1
    key = testVec[featIndex]                  # 1; 0
    valueOfFeat = secondDict[key]            # {'flippers': {0: 'no', 1: 'yes'}};no     
    # 递归遍历整棵树,比较testVec变量中的值与树节点的值,如果到达叶子节点,则返回当前节点的分类标签
    # isinstance用于判断对象的类型
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, feature_names, testVec)
    else: 
        classLabel = valueOfFeat
    return classLabel

def storeTree(inputTree,filename):
    '''
    使用pickle模块存储决策树
    '''
    import pickle
    fw = open(filename,'wb+')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):
    '''
    导入决策树模型
    '''
    import pickle
    fr = open(filename,'rb')
    return pickle.load(fr)

if __name__== "__main__":  
    
    dataSet,feature_names = createDataSet()
    myTree = createTree(dataSet, feature_names.copy())
    ans = classify(myTree,feature_names,[1,0])
    print(ans)
#     storeTree(myTree,'mt.txt')
#     myTree2 = grabTree('mt.txt')
#     print(myTree2)

通过matlibplot 绘制决策树

trees_plot.py

'''
Created on 2018年7月27日

@author: hcl
'''
import matplotlib.pyplot as plt

# 定义文本框和箭头格式
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

# 绘制带箭头的注释
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )

def createPlot(inTree):
    '''
    绘树主函数
    '''
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    # 设置坐标轴数据
    axprops = dict(xticks=[], yticks=[])
    # 无坐标轴
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    # 带坐标轴
#    createPlot.ax1 = plt.subplot(111, frameon=False)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    # 两个全局变量plotTree.xOff和plotTree.yOff追踪已经绘制的节点位置,
    # 以及放置下一个节点的恰当位置
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

def getNumLeafs(myTree):
    '''
    获取叶节点的数目
    '''
    numLeafs = 0
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        # 判断节点是否为字典来以此判断是否为叶子节点
        if type(secondDict[key]).__name__=='dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

def getTreeDepth(myTree):
    '''
    获取树的层数
    '''
    maxDepth = 0
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

def plotMidText(cntrPt, parentPt, txtString):
    '''
    计算父节点和子节点的中间位置,并在此处添加简单的文本标签信息
    '''
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    # 计算宽与高
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstSides = list(myTree.keys())
    firstStr = firstSides[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    # 标记子节点属性值    
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    # 减少y偏移
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def retrieveTree(i):
    '''
    保存了树的测试数据
    '''
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

if __name__== "__main__":  
    '''
    绘制树
    '''
    createPlot(retrieveTree(0))

输出:

决策树分类算法-ID3

预测隐形眼睛分类

数据集:

决策树分类算法-ID3

输入   test.py

'''
Created on 2018年7月26日

@author: hcl
'''
import trees
import trees_plot

fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels=['age','prescript','astigmatic','tearRate']
lensesTree = trees.createTree(lenses,lensesLabels)
trees_plot.createPlot(lensesTree)

输出:

决策树分类算法-ID3