[Leedcode][第215题][JAVA][数组中的第K个最大元素][快排][优先队列]
程序员文章站
2024-02-15 08:51:10
...
【问题描述】[中等]
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
说明:
你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。
【解答思路】
1. 暴力解法(快排)
时间复杂度:O(NlogN) 空间复杂度:O(1)
import java.util.Arrays;
public class Solution {
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
Arrays.sort(nums);
return nums[len - k];
}
}
2. 借助 partition 操作定位到最终排定以后索引为 len - k 的那个元素(特别注意:随机化切分元素)
时间复杂度:O(N) 空间复杂度:O(1)
public class Solution {
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
int left = 0;
int right = len - 1;
// 转换一下,第 k 大元素的索引是 len - k
int target = len - k;
while (true) {
int index = partition(nums, left, right);
if (index == target) {
return nums[index];
} else if (index < target) {
left = index + 1;
} else {
right = index - 1;
}
}
}
/**
* 在数组 nums 的子区间 [left, right] 执行 partition 操作,返回 nums[left] 排序以后应该在的位置
* 在遍历过程中保持循环不变量的语义
* 1、[left + 1, j] < nums[left]
* 2、(j, i] >= nums[left]
*
* @param nums
* @param left
* @param right
* @return
*/
public int partition(int[] nums, int left, int right) {
int pivot = nums[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (nums[i] < pivot) {
// 小于 pivot 的元素都被交换到前面
j++;
swap(nums, j, i);
}
}
// 在之前遍历的过程中,满足 [left + 1, j] < pivot,并且 (j, i] >= pivot
swap(nums, j, left);
// 交换以后 [left, j - 1] < pivot, nums[j] = pivot, [j + 1, right] >= pivot
return j;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
import java.util.Random;
public class Solution {
private static Random random = new Random(System.currentTimeMillis());
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
int target = len - k;
int left = 0;
int right = len - 1;
while (true) {
int index = partition(nums, left, right);
if (index < target) {
left = index + 1;
} else if (index > target) {
right = index - 1;
} else {
return nums[index];
}
}
}
// 在区间 [left, right] 这个区间执行 partition 操作
private int partition(int[] nums, int left, int right) {
// 在区间随机选择一个元素作为标定点
if (right > left) {
int randomIndex = left + 1 + random.nextInt(right - left);
swap(nums, left, randomIndex);
}
int pivot = nums[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (nums[i] < pivot) {
j++;
swap(nums, j, i);
}
}
swap(nums, left, j);
return j;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
import java.util.Random;
public class Solution {
private static Random random = new Random(System.currentTimeMillis());
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
int left = 0;
int right = len - 1;
// 转换一下,第 k 大元素的索引是 len - k
int target = len - k;
while (true) {
int index = partition(nums, left, right);
if (index == target) {
return nums[index];
} else if (index < target) {
left = index + 1;
} else {
right = index - 1;
}
}
}
public int partition(int[] nums, int left, int right) {
// 在区间随机选择一个元素作为标定点
if (right > left) {
int randomIndex = left + 1 + random.nextInt(right - left);
swap(nums, left, randomIndex);
}
int pivot = nums[left];
// 将等于 pivot 的元素分散到两边
// [left, lt) <= pivot
// (rt, right] >= pivot
int lt = left + 1;
int rt = right;
while (true) {
while (lt <= rt && nums[lt] < pivot) {
lt++;
}
while (lt <= rt && nums[rt] > pivot) {
rt--;
}
if (lt > rt) {
break;
}
swap(nums, lt, rt);
lt++;
rt--;
}
swap(nums, left, rt);
return rt;
}
private void swap(int[] nums, int index1, int index2) {
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
}
3. 优先队列
import java.util.PriorityQueue;
public class Solution {
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
// 使用一个含有 len 个元素的最小堆,默认是最小堆,可以不写 lambda 表达式:(a, b) -> a - b
PriorityQueue<Integer> minHeap = new PriorityQueue<>(len, (a, b) -> a - b);
for (int i = 0; i < len; i++) {
minHeap.add(nums[i]);
}
for (int i = 0; i < len - k; i++) {
minHeap.poll();
}
return minHeap.peek();
}
}
import java.util.PriorityQueue;
public class Solution {
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
// 使用一个含有 len 个元素的最大堆,lambda 表达式应写成:(a, b) -> b - a
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(len, (a, b) -> b - a);
for (int i = 0; i < len; i++) {
maxHeap.add(nums[i]);
}
for (int i = 0; i < k - 1; i++) {
maxHeap.poll();
}
return maxHeap.peek();
}
}
import java.util.PriorityQueue;
public class Solution {
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
// 使用一个含有 k 个元素的最小堆
PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);
for (int i = 0; i < k; i++) {
minHeap.add(nums[i]);
}
for (int i = k; i < len; i++) {
// 看一眼,不拿出,因为有可能没有必要替换
Integer topEle = minHeap.peek();
// 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
if (nums[i] > topEle) {
minHeap.poll();
minHeap.add(nums[i]);
}
}
return minHeap.peek();
}
}
import java.util.PriorityQueue;
public class Solution {
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
// 最小堆
PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(k + 1, (a, b) -> (a - b));
for (int i = 0; i < k; i++) {
priorityQueue.add(nums[i]);
}
for (int i = k; i < len; i++) {
priorityQueue.add(nums[i]);
priorityQueue.poll();
}
return priorityQueue.peek();
}
}
import java.util.PriorityQueue;
public class Solution {
// 根据 k 的不同,选最大堆和最小堆,目的是让堆中的元素更小
// 思路 1:k 要是更靠近 0 的话,此时 k 是一个较大的数,用最大堆
// 例如在一个有 6 个元素的数组里找第 5 大的元素
// 思路 2:k 要是更靠近 len 的话,用最小堆
// 所以分界点就是 k = len - k
public int findKthLargest(int[] nums, int k) {
int len = nums.length;
if (k <= len - k) {
// System.out.println("使用最小堆");
// 特例:k = 1,用容量为 k 的最小堆
// 使用一个含有 k 个元素的最小堆
PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);
for (int i = 0; i < k; i++) {
minHeap.add(nums[i]);
}
for (int i = k; i < len; i++) {
// 看一眼,不拿出,因为有可能没有必要替换
Integer topEle = minHeap.peek();
// 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
if (nums[i] > topEle) {
minHeap.poll();
minHeap.add(nums[i]);
}
}
return minHeap.peek();
} else {
// System.out.println("使用最大堆");
assert k > len - k;
// 特例:k = 100,用容量为 len - k + 1 的最大堆
int capacity = len - k + 1;
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(capacity, (a, b) -> b - a);
for (int i = 0; i < capacity; i++) {
maxHeap.add(nums[i]);
}
for (int i = capacity; i < len; i++) {
// 看一眼,不拿出,因为有可能没有必要替换
Integer topEle = maxHeap.peek();
// 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
if (nums[i] < topEle) {
maxHeap.poll();
maxHeap.add(nums[i]);
}
}
return maxHeap.peek();
}
}
}
【总结】
1.快排核心思想 找partition 随机化可避免极端情况
2.优先队列的使用 最大最小堆
//大堆
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(capacity, (a, b) -> b - a);
//小堆
PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);
3.assert 调试使用 程序或软件正式发布后需要关闭
转载链接:https://leetcode-cn.com/problems/kth-largest-element-in-an-array/solution/partitionfen-er-zhi-zhi-you-xian-dui-lie-java-dai-/
参考链接:https://blog.csdn.net/jeikerxiao/article/details/82262487
参考链接:https://www.cnblogs.com/wei-jing/p/10806236.html