欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MapReduce实现TopK算法(实战)

程序员文章站 2024-02-14 11:51:40
...

习读书之业,便当知读书之乐
存为善之心,不必邀为善之名

项目介绍

  • 给定数据集data.csv,内含三列,格式如下
编号 时间 风速
WT2300 2015/9/1 0:00 3.34
WT2300 2015/9/1 0:10 3.12
WT2301 2015/6/18 6:00 0.73
WT2302 2015/11/30 23:50 3.32
  • 求不同编号的风机每个月风速排名前十
  • 需要得到的结果如下
风机编号-月份 排名前十的风速
WT0230020151 17.41,16.81,16.55,16.4,15.63,15.59,15.53,15.44,15.29,15.12
WT0230020152 17.42,16.82,16.79,16.5,16.48,16.35,16.1,16.07,16.05,15.99
WT02302201512 16.54,16.4,16.06,15.96,15.56,15.48,15.47,15.46,15.13,15.11

数据集下载

data.csv 提取码76h4

程序下载

代码讲解

  • FanData.java
    该类在Map阶段从按行读入的数据解析出FanData对象
package cn.neu.blog.topk;

public class FanData {
	
	private String fanNo;

	private String time;

	private String windSpeed;
	
	public void getInstance(String row) {
		String[] cols = row.split(",");
		this.fanNo = cols[0];
		this.time = cols[1];
		this.windSpeed = cols[2];
	}

	public String getFanNo() {
		return fanNo;
	}

	public void setFanNo(String fanNo) {
		this.fanNo = fanNo;
	}

	public String getTime() {
		return time;
	}

	public void setTime(String time) {
		this.time = time;
	}

	public String getWindSpeed() {
		return windSpeed;
	}

	public void setWindSpeed(String windSpeed) {
		this.windSpeed = windSpeed;
	}
	
	@Override
	public String toString() {
		return "fanNo=" + this.fanNo + ",time=" + this.time + ",windSpeed=" + this.windSpeed;
	}
}
  • TopK.java
    • Map阶段
      Map阶段对从数据集中按行读入的数据进行解析,产生fanData对象,获得其风机编号、时间和风速,然后对时间进行分割,仅取年份和月份,将风机编号与分割后的时间进行连接,作为Map输出阶段的Key
      注意:这里将每一行读入的数据都输出了进入Shuffle阶段,程序运行效率低,而有些数据在Map阶段就可以判断不可能是前K的数据,可以在此阶段尝试使用TreeMap,自己动动脑筋~
public static class TopKMapper extends Mapper<Object, Text, Text, DoubleWritable> {
        private FanData fanData = new FanData();
        private static final int K = 10;

        protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            fanData.getInstance(value.toString());
            String fanNo = fanData.getFanNo();
            String time = fanData.getTime();
            time = time.substring(0,7).replace("/", "");
            String strKey = fanNo + time;
            double windSpeed = Double.parseDouble(fanData.getWindSpeed());
            context.write(new Text(strKey), new DoubleWritable(windSpeed));
        }
    }
  • Reduce阶段
    该阶段需要实例化一个TreeMap对象,用于对风速进行排序
    注意:该对象能对Double进行排序,但不能对DoubleWritable进行排序
    将Key对应的Values依次添加到TreeMap中,控制TreeMap的大小始终不超过K,若超过则将TreeMap第一个元素(最小的)剔除
public static class TopKReducer extends Reducer<Text, DoubleWritable, Text, Text> {
        private static final int K = 10;
        TreeMap<Double, Double> tm = new TreeMap<Double, Double>();
        StringBuffer sb = new StringBuffer();

        protected void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
            tm = new TreeMap<Double, Double>();
            sb = new StringBuffer();
            for(DoubleWritable val:values){
                tm.put(val.get(), val.get());
                if(tm.size() > K){
                    tm.remove(tm.firstKey());
                }
            }
            for(Double ws : tm.descendingKeySet()) sb.append(ws).append(",");
            context.write(key, new Text(sb.toString().substring(0, sb.toString().lastIndexOf(","))));
        }
    }
  • 主函数
    使用IDE运行该程序时需要设置参数
    otherArgs[0]为输入路径
    otherArgs[1]为输出路径
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        System.setProperty("HADOOP_USER_NAME", "root");
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.newInstance(conf);
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if(otherArgs.length != 2){
            System.err.println("Usage: topk <in> <out>");
            System.exit(2);
        }
        Path outPath = new Path(otherArgs[1]);
        if(fs.exists(outPath)){
            fs.delete(outPath, true);
        }
        Job job = Job.getInstance(conf, "topk");
        job.setJarByClass(TopK.class);
        job.setMapperClass(TopKMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DoubleWritable.class);
        job.setReducerClass(TopKReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

运行结果示例

MapReduce实现TopK算法(实战)

有疑问的朋友可以在下方留言或者私信我,我尽快回答
欢迎各路大神萌新指点、交流!
求关注!求点赞!求收藏!