vpp之节点报文处理流程分析
程序员文章站
2024-02-13 20:55:16
...
这里以vpp提供的节点sample例子为例来分析vpp的节点对报文处理的流程
vpp/src/examples/sample-plugin/sample
$ll
total 56
-rw-rw-r-- 1 ych ych 886 Apr 1 17:34 CMakeLists.txt
-rw-rw-r-- 1 ych ych 17933 Apr 1 17:34 node.c
-rw-rw-r-- 1 ych ych 712 Apr 1 17:34 sample_all_api_h.h
-rw-rw-r-- 1 ych ych 1068 Apr 1 17:34 sample.api
-rw-rw-r-- 1 ych ych 6569 Apr 1 17:34 sample.c
-rw-rw-r-- 1 ych ych 1135 Apr 1 17:34 sample.h
-rw-rw-r-- 1 ych ych 960 Apr 1 17:34 sample_msg_enum.h
-rw-rw-r-- 1 ych ych 5512 Apr 1 17:34 sample_test.c
vpp的每一个插件internal节点报文处理函数大致如下函数,我对函数每一步都做了具体解释,具体我们看下面的函数就好。
VLIB_NODE_FN (sample_node) (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame)
{
u32 n_left_from, *from, *to_next;
sample_next_t next_index;
u32 pkts_swapped = 0;
/* 本节点收到的vector包的起始地址 */
from = vlib_frame_vector_args (frame);
/* 本节点收到的vector包数 */
n_left_from = frame->n_vectors;
/* cached_next_index记录着上一次经过该节点时的next_index
next_index对应着VLIB_REGISTER_NODE (sample_node).next_nodes中下一节点的索引 */
next_index = node->cached_next_index;
while (n_left_from > 0)
{
u32 n_left_to_next;
/* to_next: next_index所指下一个节点的收包缓存的空闲位置首地址 */
/* n_left_to_next:下一个节点收包缓存的空闲位置总数 */
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
/* 一次性处理两个包 */
while (n_left_from >= 4 && n_left_to_next >= 2)
{
/* next0和next1指明包的下一个节点索引值 */
u32 next0 = SAMPLE_NEXT_INTERFACE_OUTPUT;
u32 next1 = SAMPLE_NEXT_INTERFACE_OUTPUT;
u32 sw_if_index0, sw_if_index1;
u8 tmp0[6], tmp1[6];
ethernet_header_t *en0, *en1;
u32 bi0, bi1;
vlib_buffer_t *b0, *b1;
/* Prefetch next iteration. */
/* from[2]和from[3]是第2和第3个buf的索引,如果这里有第2和第3报文进来
的话,就是放在from[2]和from[3]索引位置,所以这里对其做指令预取*/
{
vlib_buffer_t *p2, *p3;
p2 = vlib_get_buffer (vm, from[2]);
p3 = vlib_get_buffer (vm, from[3]);
vlib_prefetch_buffer_header (p2, LOAD);
vlib_prefetch_buffer_header (p3, LOAD);
CLIB_PREFETCH (p2->data, CLIB_CACHE_LINE_BYTES, STORE);
CLIB_PREFETCH (p3->data, CLIB_CACHE_LINE_BYTES, STORE);
}
/* speculatively enqueue b0 and b1 to the current next frame */
/* from[0]和from[1]中保存的是本节点收到包的包索引值,
这里直接把from[0]和from[1]放到to_next[0]和to_next[1]里面了,
这里的意思是假设直接把报文放到next_index对应下一个节点的收包
缓存里面了,后面vlib_validate_buffer_enqueue_x2宏会对其做调整
*/
to_next[0] = bi0 = from[0];
to_next[1] = bi1 = from[1];
/* 偏移from和to_next指针的位置,并减少n_left_from和n_left_to_next
这里n_left_from表示当前节点收到的报文总数
而n_left_to_next表示下一个节点收包缓存队列的最大数量
*/
from += 2;
to_next += 2;
n_left_from -= 2;
n_left_to_next -= 2;
/* 根据buf index从当前node里面拿到对应的vlib_buffer_t */
b0 = vlib_get_buffer (vm, bi0);
b1 = vlib_get_buffer (vm, bi1);
ASSERT (b0->current_data == 0);
ASSERT (b1->current_data == 0);
/* 从vlib_buffer_t获取报文地址 */
en0 = vlib_buffer_get_current (b0);
en1 = vlib_buffer_get_current (b1);
/* 下面这一段只是交换以太网报文的mac地址 */
/* This is not the fastest way to swap src + dst mac addresses */
#define _(a) tmp0[a] = en0->src_address[a];
foreach_mac_address_offset;
#undef _
#define _(a) en0->src_address[a] = en0->dst_address[a];
foreach_mac_address_offset;
#undef _
#define _(a) en0->dst_address[a] = tmp0[a];
foreach_mac_address_offset;
#undef _
#define _(a) tmp1[a] = en1->src_address[a];
foreach_mac_address_offset;
#undef _
#define _(a) en1->src_address[a] = en1->dst_address[a];
foreach_mac_address_offset;
#undef _
#define _(a) en1->dst_address[a] = tmp1[a];
foreach_mac_address_offset;
#undef _
/* 获取rx的if index后设置到tx if index里面 */
sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_RX];
sw_if_index1 = vnet_buffer (b1)->sw_if_index[VLIB_RX];
/* Send pkt back out the RX interface */
vnet_buffer (b0)->sw_if_index[VLIB_TX] = sw_if_index0;
vnet_buffer (b1)->sw_if_index[VLIB_TX] = sw_if_index1;
pkts_swapped += 2;
if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE)))
{
if (b0->flags & VLIB_BUFFER_IS_TRACED)
{
sample_trace_t *t =
vlib_add_trace (vm, node, b0, sizeof (*t));
t->sw_if_index = sw_if_index0;
t->next_index = next0;
clib_memcpy_fast (t->new_src_mac, en0->src_address,
sizeof (t->new_src_mac));
clib_memcpy_fast (t->new_dst_mac, en0->dst_address,
sizeof (t->new_dst_mac));
}
if (b1->flags & VLIB_BUFFER_IS_TRACED)
{
sample_trace_t *t =
vlib_add_trace (vm, node, b1, sizeof (*t));
t->sw_if_index = sw_if_index1;
t->next_index = next1;
clib_memcpy_fast (t->new_src_mac, en1->src_address,
sizeof (t->new_src_mac));
clib_memcpy_fast (t->new_dst_mac, en1->dst_address,
sizeof (t->new_dst_mac));
}
}
/* verify speculative enqueues, maybe switch current next frame */
/*
next_index:默认的下一结点的index
next0:实际的下一个结点的index
next0 == next_index则不需要做特别的处理,报文会自动进入下一个节点
next0 != next_index则需要对该数据包做调整,从之前next_index对应
的frame中删除,添加到next0对应的frame中
next1的判断和next0一样
*/
vlib_validate_buffer_enqueue_x2 (vm, node, next_index,
to_next, n_left_to_next,
bi0, bi1, next0, next1);
}
/* 一次性处理一个包, 处理逻辑和上面一直 */
while (n_left_from > 0 && n_left_to_next > 0)
{
u32 bi0;
vlib_buffer_t *b0;
u32 next0 = SAMPLE_NEXT_INTERFACE_OUTPUT;
u32 sw_if_index0;
u8 tmp0[6];
ethernet_header_t *en0;
/* speculatively enqueue b0 to the current next frame */
bi0 = from[0];
to_next[0] = bi0;
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
b0 = vlib_get_buffer (vm, bi0);
/*
* Direct from the driver, we should be at offset 0
* aka at &b0->data[0]
*/
ASSERT (b0->current_data == 0);
en0 = vlib_buffer_get_current (b0);
/* This is not the fastest way to swap src + dst mac addresses */
#define _(a) tmp0[a] = en0->src_address[a];
foreach_mac_address_offset;
#undef _
#define _(a) en0->src_address[a] = en0->dst_address[a];
foreach_mac_address_offset;
#undef _
#define _(a) en0->dst_address[a] = tmp0[a];
foreach_mac_address_offset;
#undef _
sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_RX];
/* Send pkt back out the RX interface */
vnet_buffer (b0)->sw_if_index[VLIB_TX] = sw_if_index0;
if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE)
&& (b0->flags & VLIB_BUFFER_IS_TRACED)))
{
sample_trace_t *t = vlib_add_trace (vm, node, b0, sizeof (*t));
t->sw_if_index = sw_if_index0;
t->next_index = next0;
clib_memcpy_fast (t->new_src_mac, en0->src_address,
sizeof (t->new_src_mac));
clib_memcpy_fast (t->new_dst_mac, en0->dst_address,
sizeof (t->new_dst_mac));
}
pkts_swapped += 1;
/* verify speculative enqueue, maybe switch current next frame */
vlib_validate_buffer_enqueue_x1 (vm, node, next_index,
to_next, n_left_to_next,
bi0, next0);
}
/* 所有流程都正确处理完毕后,下一结点的frame上已经有本结点处理过后的数据索引
执行该函数,将相关信息登记到vlib_pending_frame_t中,准备开始调度处理
*/
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
vlib_node_increment_counter (vm, sample_node.index,
SAMPLE_ERROR_SWAPPED, pkts_swapped);
return frame->n_vectors;
}
上一篇: CSS之编码规范