Matplotlib:基本图表绘制(plt.plot)
程序员文章站
2024-02-13 20:50:52
...
图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主
同时可延展出多种其他图表样式
plt.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False,
style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None,
rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)
1.Series直接生成图表
# Series直接生成图表
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot(kind='line',
label = 'hehe',
style = '--g.',
color = 'red',
alpha = 0.4,
use_index = True,
rot = 45,
grid = True,
ylim = [-50,50],
yticks = list(range(-50,50,10)),
figsize = (8,4),
title = 'test',
legend = True)
#plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'x') # 网格
plt.legend()
# Series.plot():series的index为横坐标,value为纵坐标
# kind → line,bar,barh...(折线图,柱状图,柱状图-横...)
# label → 图例标签,Dataframe格式以列名为label
# style → 风格字符串,这里包括了linestyle(-),marker(.),color(g)
# color → 颜色,有color指定时候,以color颜色为准
# alpha → 透明度,0-1
# use_index → 将索引用为刻度标签,默认为True
# rot → 旋转刻度标签,0-360
# grid → 显示网格,一般直接用plt.grid
# xlim,ylim → x,y轴界限
# xticks,yticks → x,y轴刻度值
# figsize → 图像大小
# title → 图名
# legend → 是否显示图例,一般直接用plt.legend()
# 也可以 → plt.plot()
2.Dataframe直接生成图表
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
df.plot(kind='line',
style = '--.',
alpha = 0.4,
use_index = True,
rot = 45,
grid = True,
figsize = (8,4),
title = 'test',
legend = True,
subplots = False,
colormap = 'Greens')
# subplots → 是否将各个列绘制到不同图表,默认False
# 也可以 → plt.plot(df)
推荐阅读
-
Matplotlib:基本图表绘制(plt.plot)
-
matplotlib 三维图表绘制方法简介
-
Python matplotlib画图实例之绘制拥有彩条的图表
-
【python数据分析(25)】Matplotlib库基本图形绘制(2) (直方图、密度图、散点图、矩阵散点图、极坐标图、雷达图、极轴图、箱型图)
-
Pandas中的Matplotlib绘制图表功能
-
Python利用Matplotlib绘制图表详解
-
Python matplotlib画图实例之绘制拥有彩条的图表
-
to_csv()中文乱码,Matplotlib绘制图表中文乱码解决方案
-
matplotlib 三维图表绘制方法简介
-
Python利用Matplotlib绘制图表详解