Java实现的傅里叶变化算法示例
程序员文章站
2024-02-12 14:14:10
本文实例讲述了java实现的傅里叶变化算法。分享给大家供大家参考,具体如下:
用java实现傅里叶变化 结果为复数形式 a+bi
废话不多说,实现代码如下,共两个cla...
本文实例讲述了java实现的傅里叶变化算法。分享给大家供大家参考,具体如下:
用java实现傅里叶变化 结果为复数形式 a+bi
废话不多说,实现代码如下,共两个class
fft.class 傅里叶变化功能实现代码
package fft.test; /************************************************************************* * compilation: javac fft.java execution: java fft n dependencies: complex.java * * compute the fft and inverse fft of a length n complex sequence. bare bones * implementation that runs in o(n log n) time. our goal is to optimize the * clarity of the code, rather than performance. * * limitations ----------- - assumes n is a power of 2 * * - not the most memory efficient algorithm (because it uses an object type for * representing complex numbers and because it re-allocates memory for the * subarray, instead of doing in-place or reusing a single temporary array) * *************************************************************************/ public class fft { // compute the fft of x[], assuming its length is a power of 2 public static complex[] fft(complex[] x) { int n = x.length; // base case if (n == 1) return new complex[] { x[0] }; // radix 2 cooley-tukey fft if (n % 2 != 0) { throw new runtimeexception("n is not a power of 2"); } // fft of even terms complex[] even = new complex[n / 2]; for (int k = 0; k < n / 2; k++) { even[k] = x[2 * k]; } complex[] q = fft(even); // fft of odd terms complex[] odd = even; // reuse the array for (int k = 0; k < n / 2; k++) { odd[k] = x[2 * k + 1]; } complex[] r = fft(odd); // combine complex[] y = new complex[n]; for (int k = 0; k < n / 2; k++) { double kth = -2 * k * math.pi / n; complex wk = new complex(math.cos(kth), math.sin(kth)); y[k] = q[k].plus(wk.times(r[k])); y[k + n / 2] = q[k].minus(wk.times(r[k])); } return y; } // compute the inverse fft of x[], assuming its length is a power of 2 public static complex[] ifft(complex[] x) { int n = x.length; complex[] y = new complex[n]; // take conjugate for (int i = 0; i < n; i++) { y[i] = x[i].conjugate(); } // compute forward fft y = fft(y); // take conjugate again for (int i = 0; i < n; i++) { y[i] = y[i].conjugate(); } // divide by n for (int i = 0; i < n; i++) { y[i] = y[i].scale(1.0 / n); } return y; } // compute the circular convolution of x and y public static complex[] cconvolve(complex[] x, complex[] y) { // should probably pad x and y with 0s so that they have same length // and are powers of 2 if (x.length != y.length) { throw new runtimeexception("dimensions don't agree"); } int n = x.length; // compute fft of each sequence,求值 complex[] a = fft(x); complex[] b = fft(y); // point-wise multiply,点值乘法 complex[] c = new complex[n]; for (int i = 0; i < n; i++) { c[i] = a[i].times(b[i]); } // compute inverse fft,插值 return ifft(c); } // compute the linear convolution of x and y public static complex[] convolve(complex[] x, complex[] y) { complex zero = new complex(0, 0); complex[] a = new complex[2 * x.length];// 2n次数界,高阶系数为0. for (int i = 0; i < x.length; i++) a[i] = x[i]; for (int i = x.length; i < 2 * x.length; i++) a[i] = zero; complex[] b = new complex[2 * y.length]; for (int i = 0; i < y.length; i++) b[i] = y[i]; for (int i = y.length; i < 2 * y.length; i++) b[i] = zero; return cconvolve(a, b); } // display an array of complex numbers to standard output public static void show(complex[] x, string title) { system.out.println(title); system.out.println("-------------------"); int complexlength = x.length; for (int i = 0; i < complexlength; i++) { // 输出复数 // system.out.println(x[i]); // 输出幅值需要 * 2 / length system.out.println(x[i].abs() * 2 / complexlength); } system.out.println(); } /** * 将数组数据重组成2的幂次方输出 * * @param data * @return */ public static double[] pow2doublearr(double[] data) { // 创建新数组 double[] newdata = null; int datalength = data.length; int sumnum = 2; while (sumnum < datalength) { sumnum = sumnum * 2; } int addlength = sumnum - datalength; if (addlength != 0) { newdata = new double[sumnum]; system.arraycopy(data, 0, newdata, 0, datalength); for (int i = datalength; i < sumnum; i++) { newdata[i] = 0d; } } else { newdata = data; } return newdata; } /** * 去偏移量 * * @param originalarr * 原数组 * @return 目标数组 */ public static double[] deskew(double[] originalarr) { // 过滤不正确的参数 if (originalarr == null || originalarr.length <= 0) { return null; } // 定义目标数组 double[] resarr = new double[originalarr.length]; // 求数组总和 double sum = 0d; for (int i = 0; i < originalarr.length; i++) { sum += originalarr[i]; } // 求数组平均值 double aver = sum / originalarr.length; // 去除偏移值 for (int i = 0; i < originalarr.length; i++) { resarr[i] = originalarr[i] - aver; } return resarr; } public static void main(string[] args) { // int n = integer.parseint(args[0]); double[] data = { -0.35668879080953375, -0.6118094913035987, 0.8534269560320435, -0.6699697478438837, 0.35425500561437717, 0.8910250650549392, -0.025718699518642918, 0.07649691490732002 }; // 去除偏移量 data = deskew(data); // 个数为2的幂次方 data = pow2doublearr(data); int n = data.length; system.out.println(n + "数组n中数量...."); complex[] x = new complex[n]; // original data for (int i = 0; i < n; i++) { // x[i] = new complex(i, 0); // x[i] = new complex(-2 * math.random() + 1, 0); x[i] = new complex(data[i], 0); } show(x, "x"); // fft of original data complex[] y = fft(x); show(y, "y = fft(x)"); // take inverse fft complex[] z = ifft(y); show(z, "z = ifft(y)"); // circular convolution of x with itself complex[] c = cconvolve(x, x); show(c, "c = cconvolve(x, x)"); // linear convolution of x with itself complex[] d = convolve(x, x); show(d, "d = convolve(x, x)"); } } /********************************************************************* * % java fft 8 x ------------------- -0.35668879080953375 -0.6118094913035987 * 0.8534269560320435 -0.6699697478438837 0.35425500561437717 0.8910250650549392 * -0.025718699518642918 0.07649691490732002 * * y = fft(x) ------------------- 0.5110172121330208 -1.245776663065442 + * 0.7113504894129803i -0.8301420417085572 - 0.8726884066879042i * -0.17611092978238008 + 2.4696418005143532i 1.1395317305034673 * -0.17611092978237974 - 2.4696418005143532i -0.8301420417085572 + * 0.8726884066879042i -1.2457766630654419 - 0.7113504894129803i * * z = ifft(y) ------------------- -0.35668879080953375 -0.6118094913035987 + * 4.2151962932466006e-17i 0.8534269560320435 - 2.691607282636124e-17i * -0.6699697478438837 + 4.1114763914420734e-17i 0.35425500561437717 * 0.8910250650549392 - 6.887033953004965e-17i -0.025718699518642918 + * 2.691607282636124e-17i 0.07649691490732002 - 1.4396387316837096e-17i * * c = cconvolve(x, x) ------------------- -1.0786973139009466 - * 2.636779683484747e-16i 1.2327819138980782 + 2.2180047699856214e-17i * 0.4386976685553382 - 1.3815636262919812e-17i -0.5579612069781844 + * 1.9986455722517509e-16i 1.432390480003344 + 2.636779683484747e-16i * -2.2165857430333684 + 2.2180047699856214e-17i -0.01255525669751989 + * 1.3815636262919812e-17i 1.0230680492494633 - 2.4422465262488753e-16i * * d = convolve(x, x) ------------------- 0.12722689348916738 + * 3.469446951953614e-17i 0.43645117531775324 - 2.78776395788635e-18i * -0.2345048043334932 - 6.907818131459906e-18i -0.5663280251946803 + * 5.829891518914417e-17i 1.2954076913348198 + 1.518836016779236e-16i * -2.212650940696159 + 1.1090023849928107e-17i -0.018407034687857718 - * 1.1306778366296569e-17i 1.023068049249463 - 9.435675069681485e-17i * -1.205924207390114 - 2.983724378680108e-16i 0.796330738580325 + * 2.4967811657742562e-17i 0.6732024728888314 - 6.907818131459906e-18i * 0.00836681821649593 + 1.4156564203603091e-16i 0.1369827886685242 + * 1.1179436667055108e-16i -0.00393480233720922 + 1.1090023849928107e-17i * 0.005851777990337828 + 2.512241462921638e-17i 1.1102230246251565e-16 - * 1.4986790192807268e-16i *********************************************************************/
complex.class 复数类
package fft.test; /****************************************************************************** * compilation: javac complex.java * execution: java complex * * data type for complex numbers. * * the data type is "immutable" so once you create and initialize * a complex object, you cannot change it. the "final" keyword * when declaring re and im enforces this rule, making it a * compile-time error to change the .re or .im instance variables after * they've been initialized. * * % java complex * a = 5.0 + 6.0i * b = -3.0 + 4.0i * re(a) = 5.0 * im(a) = 6.0 * b + a = 2.0 + 10.0i * a - b = 8.0 + 2.0i * a * b = -39.0 + 2.0i * b * a = -39.0 + 2.0i * a / b = 0.36 - 1.52i * (a / b) * b = 5.0 + 6.0i * conj(a) = 5.0 - 6.0i * |a| = 7.810249675906654 * tan(a) = -6.685231390246571e-6 + 1.0000103108981198i * ******************************************************************************/ import java.util.objects; public class complex { private final double re; // the real part private final double im; // the imaginary part // create a new object with the given real and imaginary parts public complex(double real, double imag) { re = real; im = imag; } // return a string representation of the invoking complex object public string tostring() { if (im == 0) return re + ""; if (re == 0) return im + "i"; if (im < 0) return re + " - " + (-im) + "i"; return re + " + " + im + "i"; } // return abs/modulus/magnitude public double abs() { return math.hypot(re, im); } // return angle/phase/argument, normalized to be between -pi and pi public double phase() { return math.atan2(im, re); } // return a new complex object whose value is (this + b) public complex plus(complex b) { complex a = this; // invoking object double real = a.re + b.re; double imag = a.im + b.im; return new complex(real, imag); } // return a new complex object whose value is (this - b) public complex minus(complex b) { complex a = this; double real = a.re - b.re; double imag = a.im - b.im; return new complex(real, imag); } // return a new complex object whose value is (this * b) public complex times(complex b) { complex a = this; double real = a.re * b.re - a.im * b.im; double imag = a.re * b.im + a.im * b.re; return new complex(real, imag); } // return a new object whose value is (this * alpha) public complex scale(double alpha) { return new complex(alpha * re, alpha * im); } // return a new complex object whose value is the conjugate of this public complex conjugate() { return new complex(re, -im); } // return a new complex object whose value is the reciprocal of this public complex reciprocal() { double scale = re * re + im * im; return new complex(re / scale, -im / scale); } // return the real or imaginary part public double re() { return re; } public double im() { return im; } // return a / b public complex divides(complex b) { complex a = this; return a.times(b.reciprocal()); } // return a new complex object whose value is the complex exponential of // this public complex exp() { return new complex(math.exp(re) * math.cos(im), math.exp(re) * math.sin(im)); } // return a new complex object whose value is the complex sine of this public complex sin() { return new complex(math.sin(re) * math.cosh(im), math.cos(re) * math.sinh(im)); } // return a new complex object whose value is the complex cosine of this public complex cos() { return new complex(math.cos(re) * math.cosh(im), -math.sin(re) * math.sinh(im)); } // return a new complex object whose value is the complex tangent of this public complex tan() { return sin().divides(cos()); } // a static version of plus public static complex plus(complex a, complex b) { double real = a.re + b.re; double imag = a.im + b.im; complex sum = new complex(real, imag); return sum; } // see section 3.3. public boolean equals(object x) { if (x == null) return false; if (this.getclass() != x.getclass()) return false; complex that = (complex) x; return (this.re == that.re) && (this.im == that.im); } // see section 3.3. public int hashcode() { return objects.hash(re, im); } // sample client for testing public static void main(string[] args) { complex a = new complex(3.0, 4.0); complex b = new complex(-3.0, 4.0); system.out.println("a = " + a); system.out.println("b = " + b); system.out.println("re(a) = " + a.re()); system.out.println("im(a) = " + a.im()); system.out.println("b + a = " + b.plus(a)); system.out.println("a - b = " + a.minus(b)); system.out.println("a * b = " + a.times(b)); system.out.println("b * a = " + b.times(a)); system.out.println("a / b = " + a.divides(b)); system.out.println("(a / b) * b = " + a.divides(b).times(b)); system.out.println("conj(a) = " + a.conjugate()); system.out.println("|a| = " + a.abs()); system.out.println("tan(a) = " + a.tan()); } }
更多关于java算法相关内容感兴趣的读者可查看本站专题:《java数据结构与算法教程》、《java操作dom节点技巧总结》、《java文件与目录操作技巧汇总》和《java缓存操作技巧汇总》
希望本文所述对大家java程序设计有所帮助。
上一篇: 基于python脚本实现软件的注册功能(机器码+注册码机制)
下一篇: iOS下拉选择菜单简单封装