欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

STL学习(自学手册+源码分析)之 map multimap

程序员文章站 2024-02-11 23:37:10
...

1.1 map

STL学习(自学手册+源码分析)之 map multimap

1.1.1 map主体实现

#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
#else
template <class Key, class T, class Compare, class Alloc = alloc>
#endif
class map {
public:

// typedefs:

  typedef Key key_type;
  typedef T data_type;
  typedef T mapped_type;
  typedef pair<const Key, T> value_type;//数据类型是pair封装起来的 注意key被封装成const的,即不允许修改key类型
  typedef Compare key_compare;
    
  class value_compare
    : public binary_function<value_type, value_type, bool> {
  friend class map<Key, T, Compare, Alloc>;
  protected :
    Compare comp;
    value_compare(Compare c) : comp(c) {}
  public:
    bool operator()(const value_type& x, const value_type& y) const {
      return comp(x.first, y.first);
    }
  };

private:
//底层实现还是使用的红黑树
  typedef rb_tree<key_type, value_type, 
                  select1st<value_type>, key_compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing map
public:
//这里的迭代器实现的就是红黑树的迭代器
  typedef typename rep_type::pointer pointer;
  typedef typename rep_type::const_pointer const_pointer;
  typedef typename rep_type::reference reference;
  typedef typename rep_type::const_reference const_reference;
  typedef typename rep_type::iterator iterator;
  typedef typename rep_type::const_iterator const_iterator;
  typedef typename rep_type::reverse_iterator reverse_iterator;
  typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
  typedef typename rep_type::size_type size_type;
  typedef typename rep_type::difference_type difference_type;

  // allocation/deallocation

  map() : t(Compare()) {}
  explicit map(const Compare& comp) : t(comp) {}

#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  map(InputIterator first, InputIterator last)
    : t(Compare()) { t.insert_unique(first, last); }

  template <class InputIterator>
  map(InputIterator first, InputIterator last, const Compare& comp)
    : t(comp) { t.insert_unique(first, last); }
#else
  map(const value_type* first, const value_type* last)
    : t(Compare()) { t.insert_unique(first, last); }
  map(const value_type* first, const value_type* last, const Compare& comp)
    : t(comp) { t.insert_unique(first, last); }

  map(const_iterator first, const_iterator last)
    : t(Compare()) { t.insert_unique(first, last); }
  map(const_iterator first, const_iterator last, const Compare& comp)
    : t(comp) { t.insert_unique(first, last); }
#endif /* __STL_MEMBER_TEMPLATES */

  map(const map<Key, T, Compare, Alloc>& x) : t(x.t) {}
  map<Key, T, Compare, Alloc>& operator=(const map<Key, T, Compare, Alloc>& x)
  {
    t = x.t;
    return *this; 
  }

  // accessors:

  key_compare key_comp() const { return t.key_comp(); }
  value_compare value_comp() const { return value_compare(t.key_comp()); }
  iterator begin() { return t.begin(); }
  const_iterator begin() const { return t.begin(); }
  iterator end() { return t.end(); }
  const_iterator end() const { return t.end(); }
  reverse_iterator rbegin() { return t.rbegin(); }
  const_reverse_iterator rbegin() const { return t.rbegin(); }
  reverse_iterator rend() { return t.rend(); }
  const_reverse_iterator rend() const { return t.rend(); }
  bool empty() const { return t.empty(); }
  size_type size() const { return t.size(); }
  size_type max_size() const { return t.max_size(); }
  T& operator[](const key_type& k) {
    return (*((insert(value_type(k, T()))).first)).second;
  }
  void swap(map<Key, T, Compare, Alloc>& x) { t.swap(x.t); }

  // insert/erase

  pair<iterator,bool> insert(const value_type& x) { return t.insert_unique(x); }
  iterator insert(iterator position, const value_type& x) {
    return t.insert_unique(position, x);
  }
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  void insert(InputIterator first, InputIterator last) {
    t.insert_unique(first, last);
  }
#else
  void insert(const value_type* first, const value_type* last) {
    t.insert_unique(first, last);
  }
  void insert(const_iterator first, const_iterator last) {
    t.insert_unique(first, last);
  }
#endif /* __STL_MEMBER_TEMPLATES */

  void erase(iterator position) { t.erase(position); }
  size_type erase(const key_type& x) { return t.erase(x); }
  void erase(iterator first, iterator last) { t.erase(first, last); }
  void clear() { t.clear(); }

  // map operations:

  iterator find(const key_type& x) { return t.find(x); }
  const_iterator find(const key_type& x) const { return t.find(x); }
  size_type count(const key_type& x) const { return t.count(x); }
  iterator lower_bound(const key_type& x) {return t.lower_bound(x); }
  const_iterator lower_bound(const key_type& x) const {
    return t.lower_bound(x); 
  }
  iterator upper_bound(const key_type& x) {return t.upper_bound(x); }
  const_iterator upper_bound(const key_type& x) const {
    return t.upper_bound(x); 
  }
  
  pair<iterator,iterator> equal_range(const key_type& x) {
    return t.equal_range(x);
  }
  pair<const_iterator,const_iterator> equal_range(const key_type& x) const {
    return t.equal_range(x);
  }
  friend bool operator== __STL_NULL_TMPL_ARGS (const map&, const map&);
  friend bool operator< __STL_NULL_TMPL_ARGS (const map&, const map&);
};

特别注意map重载的operator[],,这里如果key不存在,则会创建一个新的key值。STL学习(自学手册+源码分析)之 map multimap

T& operator[](const key_type& k) {
    return (*((insert(value_type(k, T()))).first)).second;
  }

1.2 multimap

1.2.1 multimap主体实现


#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
#else
template <class Key, class T, class Compare, class Alloc = alloc>
#endif
class multimap {
public:

// typedefs:

  typedef Key key_type;
  typedef T data_type;
  typedef T mapped_type;
  typedef pair<const Key, T> value_type;
  typedef Compare key_compare;

  class value_compare : public binary_function<value_type, value_type, bool> {
  friend class multimap<Key, T, Compare, Alloc>;
  protected:
    Compare comp;
    value_compare(Compare c) : comp(c) {}
  public:
    bool operator()(const value_type& x, const value_type& y) const {
      return comp(x.first, y.first);
    }
  };

private:
  typedef rb_tree<key_type, value_type, 
                  select1st<value_type>, key_compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing multimap
public:
  typedef typename rep_type::pointer pointer;
  typedef typename rep_type::const_pointer const_pointer;
  typedef typename rep_type::reference reference;
  typedef typename rep_type::const_reference const_reference;
  typedef typename rep_type::iterator iterator;
  typedef typename rep_type::const_iterator const_iterator; 
  typedef typename rep_type::reverse_iterator reverse_iterator;
  typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
  typedef typename rep_type::size_type size_type;
  typedef typename rep_type::difference_type difference_type;

// allocation/deallocation

  multimap() : t(Compare()) { }
  explicit multimap(const Compare& comp) : t(comp) { }

#ifdef __STL_MEMBER_TEMPLATES  
  template <class InputIterator>
  multimap(InputIterator first, InputIterator last)
    : t(Compare()) { t.insert_equal(first, last); }

  template <class InputIterator>
  multimap(InputIterator first, InputIterator last, const Compare& comp)
    : t(comp) { t.insert_equal(first, last); }
#else
  multimap(const value_type* first, const value_type* last)
    : t(Compare()) { t.insert_equal(first, last); }
  multimap(const value_type* first, const value_type* last,
           const Compare& comp)
    : t(comp) { t.insert_equal(first, last); }

  multimap(const_iterator first, const_iterator last)
    : t(Compare()) { t.insert_equal(first, last); }
  multimap(const_iterator first, const_iterator last, const Compare& comp)
    : t(comp) { t.insert_equal(first, last); }
#endif /* __STL_MEMBER_TEMPLATES */

  multimap(const multimap<Key, T, Compare, Alloc>& x) : t(x.t) { }
  multimap<Key, T, Compare, Alloc>&
  operator=(const multimap<Key, T, Compare, Alloc>& x) {
    t = x.t;
    return *this; 
  }

  // accessors:

  key_compare key_comp() const { return t.key_comp(); }
  value_compare value_comp() const { return value_compare(t.key_comp()); }
  iterator begin() { return t.begin(); }
  const_iterator begin() const { return t.begin(); }
  iterator end() { return t.end(); }
  const_iterator end() const { return t.end(); }
  reverse_iterator rbegin() { return t.rbegin(); }
  const_reverse_iterator rbegin() const { return t.rbegin(); }
  reverse_iterator rend() { return t.rend(); }
  const_reverse_iterator rend() const { return t.rend(); }
  bool empty() const { return t.empty(); }
  size_type size() const { return t.size(); }
  size_type max_size() const { return t.max_size(); }
  void swap(multimap<Key, T, Compare, Alloc>& x) { t.swap(x.t); }

  // insert/erase

  iterator insert(const value_type& x) { return t.insert_equal(x); }
  iterator insert(iterator position, const value_type& x) {
    return t.insert_equal(position, x);
  }
#ifdef __STL_MEMBER_TEMPLATES  
  template <class InputIterator>
  void insert(InputIterator first, InputIterator last) {
    t.insert_equal(first, last);
  }
#else
  void insert(const value_type* first, const value_type* last) {
    t.insert_equal(first, last);
  }
  void insert(const_iterator first, const_iterator last) {
    t.insert_equal(first, last);
  }
#endif /* __STL_MEMBER_TEMPLATES */
  void erase(iterator position) { t.erase(position); }
  size_type erase(const key_type& x) { return t.erase(x); }
  void erase(iterator first, iterator last) { t.erase(first, last); }
  void clear() { t.clear(); }

  // multimap operations:

  iterator find(const key_type& x) { return t.find(x); }
  const_iterator find(const key_type& x) const { return t.find(x); }
  size_type count(const key_type& x) const { return t.count(x); }
  iterator lower_bound(const key_type& x) {return t.lower_bound(x); }
  const_iterator lower_bound(const key_type& x) const {
    return t.lower_bound(x); 
  }
  iterator upper_bound(const key_type& x) {return t.upper_bound(x); }
  const_iterator upper_bound(const key_type& x) const {
    return t.upper_bound(x); 
  }
   pair<iterator,iterator> equal_range(const key_type& x) {
    return t.equal_range(x);
  }
  pair<const_iterator,const_iterator> equal_range(const key_type& x) const {
    return t.equal_range(x);
  }
  friend bool operator== __STL_NULL_TMPL_ARGS (const multimap&,
                                               const multimap&);
  friend bool operator< __STL_NULL_TMPL_ARGS (const multimap&,
                                              const multimap&);
};
相关标签: STL源码剖析