图像分割-最大熵阈值分割
程序员文章站
2024-02-11 12:41:40
...
转自:https://blog.csdn.net/spw_1201/article/details/53510711
收藏记录
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
using namespace cv;
using namespace std;
float caculateCurrentEntropy(Mat hist, int threshold)
{
float BackgroundSum = 0, targetSum = 0;
const float* pDataHist = (float*)hist.ptr<float>(0);
for (int i = 0; i < 256; i++)
{
//累计背景值
if (i < threshold)
{
BackgroundSum += pDataHist[i];
}
//累计目标值
else
{
targetSum += pDataHist[i];
}
}
cout << BackgroundSum << "\t" << targetSum << endl;
float BackgroundEntropy = 0, targetEntropy = 0;
for (int i = 0; i < 256; i++)
{
//计算背景熵
if (i < threshold)
{
if (pDataHist[i] == 0)
continue;
float ratio1 = pDataHist[i] / BackgroundSum;
//计算当前能量熵
BackgroundEntropy += -ratio1*logf(ratio1);
}
else //计算目标熵
{
if (pDataHist[i] == 0)
continue;
float ratio2 = pDataHist[i] / targetSum;
targetEntropy += -ratio2*logf(ratio2);
}
}
return (targetEntropy + BackgroundEntropy);
}
//寻找最大熵阈值并分割
Mat maxEntropySegMentation(Mat inputImage)
{
const int channels[1] = { 0 };
const int histSize[1] = { 256 };
float pranges[2] = { 0,256 };
const float* ranges[1] = { pranges };
MatND hist;
calcHist(&inputImage, 1, channels, Mat(), hist, 1, histSize, ranges);
float maxentropy = 0;
int max_index = 0;
Mat result;
for (int i = 0; i < 256; i++)
{
float cur_entropy = caculateCurrentEntropy(hist, i);
if (cur_entropy > maxentropy)
{
maxentropy = cur_entropy;
max_index = i;
}
}
threshold(inputImage, result, max_index, 255, CV_THRESH_BINARY);
return result;
}
int main()
{
Mat srcImage = imread("D:\\1.jpg");
if (!srcImage.data)
return -1;
Mat grayImage;
cvtColor(srcImage, grayImage, CV_BGR2GRAY);
Mat result = maxEntropySegMentation(grayImage);
imshow("grayImage", grayImage);
imshow("result", result);
waitKey(0);
return 0;
}
上一篇: JFinal项目jsp页面无法解析问题
下一篇: 用xgboost构建一个简单的模型