对Pandas MultiIndex(多重索引)详解
程序员文章站
2024-02-08 23:21:52
创建多重索引
in [16]: df = pd.dataframe(np.random.randn(3, 8), index=['a', 'b', 'c'], c...
创建多重索引
in [16]: df = pd.dataframe(np.random.randn(3, 8), index=['a', 'b', 'c'], columns=index) in [17]: df out[17]: first bar baz foo qux \ second one two one two one two one a 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 b 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 c -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466 first second two a -0.226169 b -1.436737 c -2.006747
获得索引信息
get_level_values
in [23]: index.get_level_values(0) out[23]: index(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], dtype='object', name='first') in [24]: index.get_level_values('second') out[24]: index(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], dtype='object', name='second')
基本索引
in [25]: df['bar'] out[25]: second one two a 0.895717 0.805244 b 0.410835 0.813850 c -1.413681 1.607920 in [26]: df['bar', 'one'] out[26]: a 0.895717 b 0.410835 c -1.413681 name: (bar, one), dtype: float64 in [27]: df['bar']['one'] out[27]: a 0.895717 b 0.410835 c -1.413681 name: one, dtype: float64
使用reindex对齐数据
数据准备
in [11]: s = pd.series(np.random.randn(8), index=arrays) in [12]: s out[12]: bar one -0.861849 two -2.104569 baz one -0.494929 two 1.071804 foo one 0.721555 two -0.706771 qux one -1.039575 two 0.271860 dtype: float64
s序列加(0~-2)索引的值,因为s[:-2]没有最后两个的索引,所以为nan.s[::2]意思是步长为1.
in [34]: s + s[:-2] out[34]: bar one -1.723698 two -4.209138 baz one -0.989859 two 2.143608 foo one 1.443110 two -1.413542 qux one nan two nan dtype: float64 in [35]: s + s[::2] out[35]: bar one -1.723698 two nan baz one -0.989859 two nan foo one 1.443110 two nan qux one -2.079150 two nan dtype: float64
以上这篇对pandas multiindex(多重索引)详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
上一篇: flash制作一个简易的小动画
下一篇: RankCoin首个开放审计通证交易平台