SSD 下的 MySQL IO 优化尝试
在阅读这篇文章之前,读者需要注意的是,为了维护隐私,用 MySQL 服务器的 D 段代替完整 IP,并且略去一些私密信息。A 项目,因
1、背景
在阅读这篇文章之前,读者需要注意的是,为了维护隐私,用 MySQL 服务器的 D 段代替完整 IP,并且略去一些私密信息。
A 项目,因 I/O 出现规律性地剧烈波动。每 15 分钟落地一次,innodbBuffPoolPagesFlushed 参数监控波峰和波谷交替出现,磁盘 I/O 同样如此,并且 until 达到 100%。经过排查,排除了触发器、事件、存储过程、前端程序定时器、系统 crontab 的可能性。最终定位为 InnoDB 日志切换,但是否完全是日志造成的影响,还有待进一步跟踪和分析。
找到问题的可能所在,试图在 24 主库上做了如下调整:
做了如上调整以后,I/O 趋于平稳,没有再出现大的波动。
为了保险起见,A 项目方面决定采用配有 SSD 的机型,对主库进行迁移,同时对 24 的从库 27 进行迁移。待迁移完成后,在新的主库 39 上,针对 SSD 以及 MySQL InnoDB 参数进行优化。待程序切换完成后,再次对针对 SSD 以及 MySQL InnoDB 参数进行优化。也就是说在上线前后进行优化,观察 I/O 状态。
2、SSD 特性
众所周知,SSD 的平均性能是优于 SAS 的。SSD 能解决 I/O 瓶颈,但互联网行业总要权衡收益与成本的。目前内存数据库是这个领域的一大趋势,一方面,越来越多的应用会往 NoSQL 迁移。另一方面,重要数据总要落地,传统的机械硬盘已经不能满足目前高并发、大规模数据的要求。总的来说,一方面,为了提高性能,尽可能把数据内存化,这也是 InnoDB 存储引擎不断改进的核心原则。后续的 MySQL 版本已经对 SSD 做了优化。另一方面,尽可能上 SSD。
SSD 这么神秘,接下来我们看看它有哪些特性:
总结起来,也就是随机读性能较连续读性能好,连续写性能较随机写性能好,会有写入放大的问题,同一位置插入次数过多容易导致损坏。
3、基于 SSD 的数据库优化
基于 SSD 的数据库优化,我们可以做如下事情:
具体来说,我们可以做如下调整:
针对系统 I/O 调度算法,做如下解释。系统 I/O 调度算法有四种,CFQ(Complete Fairness Queueing,完全公平排队 I/O 调度程序)、NOOP(No Operation,电梯式调度程序)、Deadline(截止时间调度程序)、AS(Anticipatory,预料 I/O 调度程序)。
下面对上述几种调度算法做简单地介绍。
CFQ 为每个进程/线程,单独创建一个队列来管理该进程所产生的请求,也就是说每个进程一个队列,各队列之间的调度使用时间片来调度,以此来保证每个进程都能被很好的分配到 I/O 带宽,I/O 调度器每次执行一个进程的 4 次请求。
NOOP 实现了一个简单的 FIFO 队列,它像电梯的工作主法一样对 I/O 请求进行组织,当有一个新的请求到来时,它将请求合并到最近的请求之后,以此来保证请求同一介质。
Deadline 确保了在一个截止时间内服务请求,这个截止时间是可调整的,而默认读期限短于写期限,这样就防止了写操作因为不能被读取而饿死的现象。
AS 本质上与 Deadline 一样,但在最后一次读操作后,要等待 6ms,才能继续进行对其它 I/O 请求进行调度。可以从应用程序中预订一个新的读请求,改进读操作的执行,但以一些写操作为代价。它会在每个 6ms 中插入新的 I/O 操作,而会将一些小写入流合并成一个大写入流,用写入延时换取最大的写入吞吐量。
在 SSD 或者 Fusion IO,最简单的 NOOP 反而可能是最好的算法,因为其他三个算法的优化是基于缩短寻道时间的,而固态硬盘没有所谓的寻道时间且 I/O 响应时间非常短。
还是用数据说话吧,以下是 SSD 下针对不同 I/O 调度算法所做的 I/O 性能测试,均为 IOPS。
I/O TypeNOOPAnticipatoryDeadlineCFQ
Sequential Read 22256 7955 22467 8652
Sequential Write 4090 2560 1370 1996
Sequential RW Read 6355 760 567 1149
Sequential RW Write 6360 760 565 1149
Random Read 17905 20847 20930 20671
Random Write 7423 8086 8113 8072
Random RW Read 4994 5221 5316 5275
Random RW Write 4991 5222 5321 5278
可以看到,整体来说,NOOP 算法略胜于其他算法。
接下来讲解需要调整的 InnoDB 参数的含义:
4、A 项目 MySQL 主从关系图
A 项目 MySQL 主从关系如图一:
图一 A 项目 MySQL 主从关系图
Yzone
5、程序切换之前调优
程序切换之前,39 只是 24 的从库,所以 IO 压力不高,以下的调整也不能说明根本性的变化。需要说明一点,以下调整的平均间隔在 30 分钟左右。
5.1 修改系统 IO 调度算法
系统默认的 I/O 调度算法 是 CFQ,我们试图先修改之。至于为什么修改,可以查看第3节。
具体的做法如下,需要注意的是,请根据实际情况做调整,比如你的系统中磁盘很可能不是 sda。
如果想永久生效,需要更改 /etc/grub.conf,添加 elevator,示例如下:
此步调整做完以后,查看 39 I/O 状态,并没有显著的变化。
5.2 修改 innodb_io_capacity = 4000
在做这个参数调整之前,我们来看看当前 MySQL 的配置:
修改方法如下:
网络上的文章,针对 SSD 的优化,MySQL 方面需要把 innodb_io_capacity 设置为 4000,或者更高。然而实际上,此业务 UPDATE 较多,每次的修改量大概有 20K,并且基本上都是离散写。innodb_io_capacity 达到 4000,SSD 并没有给整个系统带来很大的性能提升。相反,反而使 IO 压力过大,until 甚至达到 80% 以上。
5.3 修改 innodb_max_dirty_pages_pct = 25
修改方法如下:
修改之后的 MySQL 配置:
之前已经将 innodb_max_dirty_pages_pct 设置为 30,此处将 innodb_max_dirty_pages_pct 下调为 25%,,目的为了查看脏数据对 I/O 的影响。修改的结果是,I/O 出现波动,innodbBuffPoolPagesFlushed 同样出现波动。然而,由于 39 是 24 的从库,暂时还没有切换,所有压力不够大,脏数据也不够多,所以调整此参数看不出效果。
5.4 修改 innodb_io_capacity = 2000
修改方法不赘述。
修改之后的 MySQL 配置:
上一篇: SQLSERVER数据导入到MYSQL