yolov5的flask部署python调用
程序员文章站
2022-03-02 12:26:31
yolov5 github:https://github.com/ultralytics/yolov5跟踪:https://github.com/mikel-brostrom/Yolov5_DeepSort_PytorchTensorRT:https://github.com/*Xu/yolov5-tensorrtNCNN:https://github.com/WZTENG/YOLOv5_NCNNdetect:from torchvision import transformsi...
yolov5 github:https://github.com/ultralytics/yolov5
跟踪:https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch
TensorRT:https://github.com/*Xu/yolov5-tensorrt
NCNN:https://github.com/WZTENG/YOLOv5_NCNN
detect:
from torchvision import transforms
import torch
from PIL import Image,ImageDraw
from models import yolo
from utils.general import non_max_suppression
from models.experimental import attempt_load
# model = yolo.Model(r"D:\GoogleEarthProPortable\yolov5-master\models\yolov5s.yaml")
# model.load_state_dict(torch.load(r"D:\GoogleEarthProPortable\yolov5-master\weights\yolov5s.pt"))
model = attempt_load("weights/yolov5s.pt") # load FP32 model
model.eval()
img = Image.open("inference/images/bus.jpg")
tf = transforms.Compose([
transforms.Resize((512,640)),
transforms.ToTensor()
])
print(img.size) # w,h
scale_w = img.size[0] /640
scale_h = img.size[1] /512
im = img.resize((640,512))
img_tensor = tf(img)
pred = model(img_tensor[None])[0]
pred = non_max_suppression(pred,0.3,0.5)
imgDraw = ImageDraw.Draw(img)
for box in pred[0]:
b = box.cpu().detach().long().numpy()
print(b)
imgDraw.rectangle((b[0]*scale_w,b[1]*scale_h,b[2]*scale_w,b[3]*scale_h))
# imgDraw.rectangle((b[0],b[1],b[2],b[3]))
img.show()
serving:
import io
import json
from torchvision import models
import torchvision.transforms as transforms
from PIL import Image,ImageDraw
from utils.general import non_max_suppression
from models.experimental import attempt_load
from flask import Flask, jsonify, request
app = Flask(__name__)
model = attempt_load("weights/yolov5s.pt") # load FP32 model
model.eval()
names= ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
def transform_image(image_bytes):
my_transforms = transforms.Compose([transforms.Resize((512,640)),
transforms.ToTensor(),
])
image = Image.open(io.BytesIO(image_bytes))
return my_transforms(image)
def get_prediction(image_bytes):
tensor = transform_image(image_bytes=image_bytes)
outputs = model(tensor[None])[0]
print(outputs)
outputs = non_max_suppression(outputs,0.3,0.5)
boxs = outputs[0]
print(boxs[0])
print(int(boxs[0][-1].item()))
class_name = names[int(boxs[0][5].item())]
print(boxs.shape)
boxes = []
for i in range(boxs.shape[0]):
boxes.append([boxs[i][0].item(),boxs[i][1].item(),boxs[i][2].item(),boxs[i][3].item(),boxs[i][4].item(),boxs[i][5].item()])
return boxes
@app.route('/predict', methods=['POST'])
def predict():
if request.method == 'POST':
file = request.files['file']
img_bytes = file.read()
boxes = get_prediction(image_bytes=img_bytes)
return ({'boxes': boxes})
if __name__ == '__main__':
app.run()
client:
import requests
import os
for i in os.listdir("inference/images"):
image = open("inference/images/"+i,'rb')
payload = {'file':image}
r = requests.post(" http://localhost:5000/predict", files=payload).json()
print(r)
git bash控制台:
启动flask服务器:FLASK_ENV=development FLASK_APP=app.py flask run
测试命令:curl -X POST -F file=@test_img/dog.jpg http://localhost:5000/predict
本文地址:https://blog.csdn.net/sinat_28371057/article/details/110912793
上一篇: python 爬虫 抖音视频爬取 无水印下载 建议收藏
下一篇: 天津理工大学python期末复习
推荐阅读
-
总结python实现父类调用两种方法的不同
-
python-Flask编写一个简单的网络接口(1)--详解(超基础)
-
json跨域调用python的方法详解
-
python函数知识一 函数初始、定义与调用、返回值、参数和函数的好处+菜中菜...
-
使用FastCGI部署Python的Django应用的教程
-
解决python调用 ffmpeg时 ‘ffmpeg‘ 不是内部或外部命令,也不是可运行的程序
-
python3.6同一目录下 py文件的调用,两种方法
-
使用Python的Flask框架来搭建第一个Web应用程序
-
使用GitHub和Python实现持续部署的方法
-
Python的Flask框架中集成CKeditor富文本编辑器的教程