欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python/常用内建模块datetime-collections-base64

程序员文章站 2024-02-05 11:09:46
文章目录datetime获取当前日期和时间获取指定日期和时间datetime转换为timestamptimestamp转换为datetimestr转换为datetimedatetime转换为strdatetime加减本地时间转换为UTC时间时区转换练习collectionsnamedtupledequedefaultdictOrderedDictChainMapCounterPython之所以自称“batteries included”,就是因为内置了许多非常有用的模块,无需额外安装和配置,即可直接使用...

Python之所以自称“batteries included”,就是因为内置了许多非常有用的模块,无需额外安装和配置,即可直接使用

datetime

datetime是Python处理日期和时间的标准库。

获取当前日期和时间

from datetime import datetime

now = datetime.now()
print(now)--->2020-07-15 09:40:35.787790
print(type(now))---><class 'datetime.datetime'>

注意到datetime是模块,datetime模块还包含一个datetime类,通过from datetime import datetime导入的才是datetime这个类。
如果仅导入import datetime,则必须引用全名datetime.datetime
datetime.now()返回当前日期和时间,其类型是datetime

获取指定日期和时间

要指定某个日期和时间,我们直接用参数构造一个datetime

from datetime import datetime

dt = datetime(2019,5,28,12,20,25)
print(dt)--->2019-05-28 12:20:25

datetime转换为timestamp

在计算机中,时间实际上是用数字表示的。我们把1970年1月1日 00:00:00 UTC+00:00时区的时刻称为epoch time,记为0(1970年以前的时间timestamp为负数),当前时间就是相对于epoch time的秒数,称为timestamp
你可以认为:

timestamp = 0 = 1970-1-1 00:00:00 UTC+0:00

对应的北京时间是:

timestamp = 0 = 1970-1-1 08:00:00 UTC+8:00

可见timestamp的值与时区毫无关系因为timestamp一旦确定,其UTC时间就确定了,转换到任意时区的时间也是完全确定的,这就是为什么计算机存储的当前时间是以timestamp表示的,因为全球各地的计算机在任意时刻的timestamp都是完全相同的(假定时间已校准)。
把一个datetime类型转换为timestamp只需要简单调用timestamp()方法:

>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> dt.timestamp() # 把datetime转换为timestamp
1429417200.0

注意Python的timestamp是一个浮点数。如果有小数位,小数位表示毫秒数。
某些编程语言(如Java和JavaScript)的timestamp使用整数表示毫秒数,这种情况下只需要把timestamp除以1000就得到Python的浮点表示方法。

timestamp转换为datetime

要把timestamp转换为datetime,使用datetime提供的fromtimestamp()方法:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00

注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。
本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:

2015-04-19 12:20:00

实际上就是UTC+8:00时区的时间:

2015-04-19 12:20:00 UTC+8:00

而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:

2015-04-19 04:20:00 UTC+0:00
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00

str转换为datetime

很多时候,用户输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。转换方法是通过datetime.strptime()实现,需要一个日期和时间的格式化字符串:

>>> from datetime import datetime
>>> cday = datetime.strptime('2015-6-1 18:19:59', '%Y-%m-%d %H:%M:%S')
>>> print(cday)
2015-06-01 18:19:59

字符串'%Y-%m-%d %H:%M:%S'规定了日期和时间部分的格式。详细的说明请参考Python文档。

注意转换后的datetime是没有时区信息的。

datetime转换为str

如果已经有了datetime对象(需要先有一个日期对象),要把它格式化为字符串显示给用户,就需要转换为str,转换方法是通过strftime()实现的,同样需要一个日期和时间的格式化字符串:

>>> from datetime import datetime
>>> now = datetime.now()
>>> print(now.strftime('%a, %b %d %H:%M'))
Mon, May 05 16:28

datetime加减

对日期和时间进行加减实际上就是把datetime往后或往前计算,得到新的datetime。加减可以直接用+和-运算符,不过需要导入timedelta这个类:

>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
>>> now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
>>> now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
>>> now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)

可见,使用timedelta你可以很容易地算出前几天和后几天的时刻。

本地时间转换为UTC时间

本地时间是指系统设定时区的时间,例如北京时间是UTC+8:00时区的时间,而UTC时间指UTC+0:00时区的时间。
一个datetime类型有一个时区属性tzinfo,但是默认为None,所以无法区分这个datetime到底是哪个时区,除非强行给datetime设置一个时区:

>>> from datetime import datetime, timedelta, timezone
>>> tz_utc_8 = timezone(timedelta(hours=8)) # 创建时区UTC+8:00
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012)
>>> dt = now.replace(tzinfo=tz_utc_8) # 强制设置为UTC+8:00
>>> dt
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012, tzinfo=datetime.timezone(datetime.timedelta(0, 28800)))

如果系统时区恰好是UTC+8:00,那么上述代码就是正确的,否则,不能强制设置为UTC+8:00时区。

时区转换

我们可以先通过utcnow()拿到当前的UTC时间,再转换为任意时区的时间:

# 拿到UTC时间,并强制设置时区为UTC+0:00:
>>> utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc)
>>> print(utc_dt)
2015-05-18 09:05:12.377316+00:00
# astimezone()将转换时区为北京时间:
>>> bj_dt = utc_dt.astimezone(timezone(timedelta(hours=8)))
>>> print(bj_dt)
2015-05-18 17:05:12.377316+08:00
# astimezone()将转换时区为东京时间:
>>> tokyo_dt = utc_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt)
2015-05-18 18:05:12.377316+09:00
# astimezone()将bj_dt转换时区为东京时间:
>>> tokyo_dt2 = bj_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt2)
2015-05-18 18:05:12.377316+09:00

时区转换的关键在于,拿到一个datetime时,要获知其正确的时区,然后强制设置时区,作为基准时间。

利用带时区的datetime,通过astimezone()方法,可以转换到任意时区。

注:不是必须从UTC+0:00时区转换到其他时区,任何带时区的datetime都可以正确转换,例如上述bj_dttokyo_dt的转换。

练习

假设你获取了用户输入的日期和时间如2015-1-21 9:01:30,以及一个时区信息如UTC+5:00,均是str,请编写一个函数将其转换为timestamp

import re
from datetime import datetime, timezone, timedelta
def to_timestamp(dt_str, tz_str):
    #抓取并创建
    tz = re.match(r'(UTC)([\+|\-]\d+):(\d+)',tz_str)
    tz = tz.group(2)
    tz_utc = timezone(timedelta(hours = int(tz)))
    #将str转化为datetime
    dt = datetime.strptime(dt_str, '%Y-%m-%d %H:%M:%S')
    #强制设置时区
    dt = dt.replace(tzinfo=tz_utc) 
    #转化为timestamp
    t = dt.timestamp()
    return t


t1 = to_timestamp('2015-6-1 08:10:30', 'UTC+7:00')
assert t1 == 1433121030.0, t1

t2 = to_timestamp('2015-5-31 16:10:30', 'UTC-09:00')
assert t2 == 1433121030.0, t2

print('ok')

collections

namedtuple

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:p = (1, 2)
但是,当我们看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
定义一个class又小题大做了,这时,namedtuple就派上了用场:

from collections import namedtuple
Point = namedtuple('Point',['x','y'])
P=Point(1,2)
print(P.x)--->1
print(P.y)--->2

namedtuple是一个函数,可以用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素
这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
可以验证创建的Point对象是tuple的一种子类:

>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现listappend()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

defaultdict

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时返回一个默认值,就可以用defaultdict:

from collections import defaultdict
d = defaultdict(lambda: 'N/A')
d['key1'] = 'abc'
print(d['key1']) # key1存在-->abc
print(d['key2']) # key2不存在,返回默认值-->N/A

注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入
除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序
如果要保持Key的顺序,可以用OrderedDict

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDictKey会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
['z', 'y', 'x']

OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时先删除最早添加的Key

from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity

    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print('remove:', last)
        if containsKey:
            del self[key]
            print('set:', (key, value))
        else:
            print('add:', (key, value))
        OrderedDict.__setitem__(self, key, value)

ChainMap

ChainMap可以把一组dict串起来并组成一个逻辑上的dictChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。

什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。

下面的代码演示了如何查找usercolor这两个参数:

from collections import ChainMap
import os, argparse

# 构造缺省参数:
defaults = {
    'color': 'red',
    'user': 'guest'
}

# 构造命令行参数:
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }

# 组合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)

# 打印参数:
print('color=%s' % combined['color'])
print('user=%s' % combined['user'])

科普:

定义:argparse是python标准库里面用来处理命令行参数的库 'import argparse'
命令行参数分为位置参数和选项参数:
位置(必选)参数:前面不需要-或者--;
可选参数:通过一个-来指定的短参数,如-h;通过–来指定的长参数,如- -help
使用步骤:
 (1)import argparse    首先导入模块
 (2)parser = argparse.ArgumentParser()    创建一个解析对象
 (3)parser.add_argument()    向该对象中添加你要关注的命令行参数和选项
 (4)args = parser.parse_args()    进行解析 或者 args,unparsed = parser.parse_known_args()
 (5)索引参数args.pospath
  (4’)或者args = vars(parser.parse_args())将其变为一个字典
 (5‘)索引参数 args['pospath']
其中:
'argparse.ArgumentParser'一般我们只选择用description
ArgumentParser对象保存了所有必要的信息,用以将命令行参数解析为相应的python数据类型。
'parser.add_argument()'
通过add-argument()方法来给ArgumentParser对象添加新的命令行参数,参数的类型和相应的处理方法由不同的参数决定。
'args=parser.parse_args(args=None, namespace=None)'
parse_args()方法将命令行参数字符串转换为相应对象并赋值给Namespace对象的相应属性,默认返回一个Namespace对象。

没有任何参数时,打印出默认参数:

$ python3 use_chainmap.py 
color=red
user=guest

当传入命令行参数时,优先使用命令行参数:

$ python3 use_chainmap.py -u bob
color=red
user=bob

同时传入命令行参数和环境变量,命令行参数的优先级较高:

$ user=admin color=green python3 use_chainmap.py -u bob
color=green
user=bob

Counter

Counter是一个简单的计数器,例如,统计字符出现的个数:

>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
...     c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
>>> c.update('hello') # 也可以一次性update
>>> c
Counter({'r': 2, 'o': 2, 'g': 2, 'm': 2, 'l': 2, 'p': 1, 'a': 1, 'i': 1, 'n': 1, 'h': 1, 'e': 1})

Counter实际上也是dict的一个子类,上面的结果可以看出每个字符出现的次数。

base64

Base64是一种用64个字符来表示任意二进制数据的方法。

用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。

Base64的原理很简单,首先,准备一个包含64个字符的数组:

['A', 'B', 'C', ... 'a', 'b', 'c', ... '0', '1', ... '+', '/']

然后,对二进制数据进行处理,每3个字节一组,一共是3x8=24bit,划为4组,每组正好6个bit:
python/常用内建模块datetime-collections-base64
这样我们得到4个数字作为索引,然后查表,获得相应的4个字符,就是编码后的字符串。
所以,Base64编码会把3字节的二进制数据编码为4字节的文本数据,长度增加33%,好处是编码后的文本数据可以在邮件正文、网页等直接显示。
如果要编码的二进制数据不是3的倍数,最后会剩下1个或2个字节怎么办?Base64用\x00字节在末尾补足后,再在编码的末尾加上1个或2个=号,表示补了多少字节,解码的时候,会自动去掉。
Python内置的base64可以直接进行base64的编解码:

>>> import base64
>>> base64.b64encode(b'binary\x00string')
b'YmluYXJ5AHN0cmluZw=='
>>> base64.b64decode(b'YmluYXJ5AHN0cmluZw==')
b'binary\x00string'

由于标准的Base64编码后可能出现字符+/,在URL中就不能直接作为参数,所以又有一种"url safe"的base64编码,其实就是把字符+/分别变成-_

>>> base64.b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd++//'
>>> base64.urlsafe_b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd--__'
>>> base64.urlsafe_b64decode('abcd--__')
b'i\xb7\x1d\xfb\xef\xff'

还可以自己定义64个字符的排列顺序,这样就可以自定义Base64编码,不过,通常情况下完全没有必要。
Base64是一种通过查表的编码方法,不能用于加密,即使使用自定义的编码表也不行。
Base64适用于小段内容的编码,比如数字证书签名、Cookie的内容等。
由于=字符也可能出现在Base64编码中,但=用在URL、Cookie里面会造成歧义,所以,很多Base64编码后会把=去掉:

# 标准Base64:
'abcd' -> 'YWJjZA=='
# 自动去掉=:
'abcd' -> 'YWJjZA'

去掉=后怎么解码呢?因为Base64是把3个字节变为4个字节,所以,Base64编码的长度永远是4的倍数,因此,需要加上=把Base64字符串的长度变为4的倍数,就可以正常解码了

练习 请写一个能处理去掉=的base64解码函数:

def safe_base64_decode(s):
    if isinstance(s, bytes):
        if len(s) % 4 != 0:
            s += "=".encode('utf8')
            return safe_base64_decode(s)
    return base64.b64decode(s)
assert b'abcd' == safe_base64_decode(b'YWJjZA=='), safe_base64_decode('YWJjZA==')
assert b'abcd' == safe_base64_decode(b'YWJjZA'), safe_base64_decode('YWJjZA')
print('ok')

本文地址:https://blog.csdn.net/fan__lee/article/details/107352946