Tensorflow 之 CPU计算效率和GPU计算效率对比
程序员文章站
2024-02-03 21:17:28
...
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
plt.close()
# Default parameters for plots
matplotlib.rcParams['font.size'] = 20
matplotlib.rcParams['figure.titlesize'] = 20
matplotlib.rcParams['figure.figsize'] = [9, 7]
# matplotlib.rcParams['font.family'] = ['KaiTi']
matplotlib.rcParams['axes.unicode_minus']=False
import tensorflow as tf
import timeit
iteration = 8
cpu_data = []
gpu_data = []
for n in range(iteration):
n = 10**n
# 创建在CPU上运算的2个矩阵
with tf.device('/cpu:0'):
cpu_a = tf.random.normal([1, n])
cpu_b = tf.random.normal([n, 1])
print(cpu_a.device, cpu_b.device)
# 创建使用GPU运算的2个矩阵
with tf.device('/gpu:0'):
gpu_a = tf.random.normal([1, n])
gpu_b = tf.random.normal([n, 1])
print(gpu_a.device, gpu_b.device)
def cpu_run():
with tf.device('/cpu:0'):
c = tf.matmul(cpu_a, cpu_b)
return c
def gpu_run():
with tf.device('/gpu:0'):
c = tf.matmul(gpu_a, gpu_b)
return c
# 第一次计算需要热身,避免将初始化阶段时间结算在内
cpu_time = timeit.timeit(cpu_run, number=10)
gpu_time = timeit.timeit(gpu_run, number=10)
print('warmup:', cpu_time, gpu_time)
# 正式计算100次,取平均时间
cpu_time = timeit.timeit(cpu_run, number=100)
gpu_time = timeit.timeit(gpu_run, number=100)
print('run time:', cpu_time, gpu_time)
cpu_data.append(cpu_time/100)
gpu_data.append(gpu_time/100)
del cpu_a,cpu_b,gpu_a,gpu_b
x = [10**i for i in range(iteration)]
cpu_data = [1000*i for i in cpu_data]
gpu_data = [1000*i for i in gpu_data]
plt.plot(x, cpu_data, color='C1', marker='s', label='CPU')
plt.plot(x, gpu_data, color='C0', marker='^', label='GPU')
plt.gca().set_xscale('log')
plt.gca().set_yscale('log')
plt.ylim([0,100])
plt.xlabel(r'size of matrix n:(1xn)@(nx1)')
plt.ylabel(r'run time(ms)')
plt.legend()
# plt.savefig('gpu-time.svg')
plt.show()
实验结果:
上一篇: 机器学习实战——PCA实现图像压缩