Python 字符串相似性的几种度量方法
字符串的相似性比较应用场合很多,像拼写纠错、文本去重、上下文相似性等。
评价字符串相似度最常见的办法就是:把一个字符串通过插入、删除或替换这样的编辑操作,变成另外一个字符串,所需要的最少编辑次数,这种就是编辑距离(edit distance)度量方法,也称为levenshtein距离。海明距离是编辑距离的一种特殊情况,只计算等长情况下替换操作的编辑次数,只能应用于两个等长字符串间的距离度量。
其他常用的度量方法还有 jaccard distance、j-w距离(jaro–winkler distance)、余弦相似性(cosine similarity)、欧氏距离(euclidean distance)等。
python-levenshtein 使用
使用 pip install python-levenshtein 指令安装 levenshtein
# -*- coding: utf-8
-*-import difflib
# import jieba
import levenshtein
str1 = "我的骨骼雪白 也长不出青稞"
str2 = "雪的日子 我只想到雪中去si"
# 1. difflib
seq = difflib.sequencematcher(none, str1,str2)
ratio = seq.ratio()
print 'difflib similarity1: ', ratio
# difflib 去掉列表中不需要比较的字符
seq = difflib.sequencematcher(lambda x: x in ' 我的雪', str1,str2)
ratio = seq.ratio()
print 'difflib similarity2: ', ratio
# 2. hamming距离,str1和str2长度必须一致,描述两个等长字串之间对应位置上不同字符的个数
# sim = levenshtein.hamming(str1, str2)
# print 'hamming similarity: ', sim
# 3. 编辑距离,描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括 插入、删除、替换
sim = levenshtein.distance(str1, str2)
print 'levenshtein similarity: ', sim
# 4.计算莱文斯坦比
sim = levenshtein.ratio(str1, str2)
print 'levenshtein.ratio similarity: ', sim
# 5.计算jaro距离
sim = levenshtein.jaro(str1, str2 )
print 'levenshtein.jaro similarity: ', sim
# 6. jaro–winkler距离
sim = levenshtein.jaro_winkler(str1 , str2 )
print 'levenshtein.jaro_winkler similarity: ', sim
输出:
difflib similarity1: 0.246575342466
difflib similarity2: 0.0821917808219
levenshtein similarity: 33
levenshtein.ratio similarity: 0.27397260274
levenshtein.jaro similarity: 0.490208958959
levenshtein.jaro_winkler similarity: 0.490208958959
推荐阅读
-
Python 字符串相似性的几种度量方法
-
Python 比较文本相似性的方法(difflib,Levenshtein)
-
Python学习_几种存取xls/xlsx文件的方法总结
-
python 根据时间来生成唯一的字符串方法
-
python中将\\uxxxx转换为Unicode字符串的方法
-
在Python中处理字符串之ljust()方法的使用简介
-
python3 字符串/列表/元组(str/list/tuple)相互转换方法及join()函数的使用
-
字符串的常用操作和方法(Python入门教程)
-
Python 检测字符串中是否包含某子字符串的操作方法 index() 函数
-
python中统计计数的几种方法和Counter的介绍