欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python基于pandas的数据处理(一)

程序员文章站 2024-02-01 21:47:52
...
1 import pandas as pd, numpy as np
2 dates = pd.date_range('20130101', periods=6)
3 df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
1 mutate + ifelse
1 df['E'] = np.where(df['D'] >= 0, '>=0', '<0')
2 df['F'] = np.random.randint(0, 2, 6)
3 df.assign(G = df.A * df.D) # 或者
4 df['F'] = df['F'].apply(str) #针对单列的
5 df.applymap(str) #这个相当于是mutate_each
2 table

1 pd.value_counts(df["E"])
2 pd.pivot_table(df,index=['E','F'])
3 index 也就是取df的rownames,但与R不一样的在于,df可能有多维rownames
1 df.index
2 df.set_index(['A'], drop = 0, append = 1) # 把已有的列设置为index,可保留之前的index,也可以把新的index在原数据中删除
3 df['dates'] = df.index # 新生成一列dates
4 df.reset_index(level=0, inplace=True) # 同上
5 df.reset_index(level=['index']) # 同上
4 删除列和行
1 df = df.drop('index', axis = 1) # 可以删除多列
2 df.drop(df.index[[1,3]])

5 column names

1 df.columns
2 df.columns = ['a', 'b', 'c', 'e', 'd', 'f'] # 重命名
3 df.rename(columns = {'A':'aa','B':'bb', 'C':'cc', 'D':'dd', 'E':'ee', 'F':'ff'}, inplace=True)
4 df.rename(columns=lambda x: x[1:].upper(), inplace=True) # 也可以用函数 inplace参数的意思就是代替原来的变量,深拷贝

6 哑变量 dummy variables
1 pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies()
7 纯粹的df的矩阵,即不包含column和index
1 df.values
2 df.get_values()
8 summary
1 df.describe() # 只会针对数值型变量做计算
9 rbind
1 df2=pd.DataFrame([[5,6],[7,8]],columns=list('AB'))
2 df.append(df2, ignore_index=True)
10 group by 分组汇总计算,和pivot_table类似
1 df.groupby(['E','F']).mean()
2 df.groupby(['E','F']).agg(['sum', 'mean'])
3 pd.pivot_table(df,index=['E','F'], aggfunc=[np.sum, np.mean])
4 df.pivot_table(index=['E','F'], aggfunc=[np.sum, np.mean]) # 同上
5 df.groupby(['E','F']).agg({'A':['mean','sum'], 'B':'min'}) # groupby 也可以这样写
11 排序
1 df.sort(['A','B'],ascending=[1,0]) # 按列排序,na_position控制NAN的位置
2 df.sort_index(ascending=0) # 按index排序
12 筛选
1 df[(df.A >= -1) & (df.B <= 0)] # 值筛选
2 df[df.E.str.contains(">")] # 包含某个字符,contains筛选的其实是正则表达式
3 df[df.F.isin(['1'])] # 在列表内
13 变量选择
1 df['A'] # 单个的列
2 df[0:3] #
3 df['20130102':'20130104'] # 按index筛选
4 df.loc[:,] # 类似于R里面的dataframe选行和列的方法
5 df.iloc[:,] # iloc只能用数字了