欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

快速找出一个数组中的两个数字,让这两个数字之和等于一个给定的值

程序员文章站 2024-02-01 21:43:22
...

原文地址http://blog.csdn.net/hackbuteer1/article/details/6699642
快速找出一个数组中的两个数字,让这两个数字之和等于一个给定的值,为了简化起见,我们假设这个数组中肯定存在至少一组符合要求的解。
假如有如下的两个数组,如图所示:
5,6,1,4,7,9,8
给定Sum= 10
1,5,6,7,8,9
给定Sum= 10
分析与解法
这个题目不是很难,也很容易理解。但是要得出高效率的解法,还是需要一番思考的。
解法一
一个直接的解法就是穷举:从数组中任意取出两个数字,计算两者之和是否为给定的数字。
显然其时间复杂度为N(N-1)/2O(N^2)。这个算法很简单,写起来也很容易,但是效率不高。一般在程序设计里面,要尽可能降低算法的时间和空间复杂度,所以需要继续寻找效率更高的解法。
解法二
求两个数字之和,假设给定的和为Sum。一个变通的思路,就是对数组中的每个数字arr[i]都判别Sum-arr[i]是否在数组中,这样,就变通成为一个查找的算法。
在一个无序数组中查找一个数的复杂度是O(N),对于每个数字arr[i],都需要查找对应的Sum-arr[i]在不在数组中,很容易得到时间复杂度还是O(N^2)。这和最原始的方法相比没有改进。但是如果能够提高查找的效率,就能够提高整个算法的效率。怎样提高查找的效率呢?
学过编程的人都知道,提高查找效率通常可以先将要查找的数组排序,然后用二分查找等方法进行查找,就可以将原来O(N)的查找时间缩短到O(log2N),这样对于每个arr[i],都要花O(log2N)去查找对应的Sum-arr[i]在不在数组中,总的时间复杂度降低为N* log2N。当让将长度为N的数组进行排序本身也需要O(N*log2N)的时间,好在只须要排序一次就够了,所以总的时间复杂度依然是O(N*log2N)。这样,就改进了最原始的方法。
到这里,有的读者可能会更进一步地想,先排序再二分查找固然可以将时间从O(N^2)缩短到O(N*log2N),但是还有更快的查找方法:hash表。因为给定一个数字,根据hash表映射查找另一个数字是否在数组中,只需要O(1)时间。这样的话,总体的算法复杂度可以降低到O(N),但这种方法需要额外增加O(N)的hash表存储空间。某些情况下,用空间换时间也不失为一个好方法。
解法三
还可以换个角度来考虑问题,假设已经有了这个数组的任意两个元素之和的有序数组(长为N^2)。那么利用二分查找法,只需用O(2*log2N)就可以解决这个问题。当然不太可能去计算这个有序数组,因为它需要O(N^2)的时间。但这个思考仍启发我们,可以直接对两个数字的和进行一个有序的遍历,从而降低算法的时间复杂度。
首先对数组进行排序,时间复杂度为(N*log2N)。
然后令i = 0,j = n-1,看arr[i] + arr[j] 是否等于Sum,如果是,则结束。如果小于Sum,则i = i + 1;如果大于Sum,则 j = j – 1。这样只需要在排好序的数组上遍历一次,就可以得到最后的结果,时间复杂度为O(N)。两步加起来总的时间复杂度O(N*log2N),下面这个程序就利用了这个思想,代码如下所示:
[cpp] view plain copy

int getSumNum(int[] arr,int Sum),   //arr为数组,Sum为和   
{  
     int i,j;  
     for(i = 0, j = n-1; i < j ; )  
     {  
         if(arr[i] + arr[j] == Sum)  
             return ( i , j );  
         else if(arr[i] + arr[j] < Sum)  
             i++;  
         else  
            j--;  
     }  
     return ( -1 , -1 );  
 }  
  它的时间复杂度是O(N)。
  刚开始一直无法理解这样一定可以找到这个和吗?难道不会漏掉了解的位置。可以这么理解,假如排好序后的数组为1,3,6,a,9,12,17,28,b,35,46  ,那么i最初指向1的位置,j最初指向46的位置,比如所求的是Sum=a+b,a