欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

C++11中的使用

程序员文章站 2024-01-31 14:07:48
原子库为细粒度的原子操作提供组件,允许无锁并发编程。涉及同一对象的每个原子操作,相对于任何其他原子操作是不可分的。原子对象不具有数据竞争(data race)。原子类型对象的主要特...
原子库为细粒度的原子操作提供组件,允许无锁并发编程。涉及同一对象的每个原子操作,相对于任何其他原子操作是不可分的。原子对象不具有数据竞争(data race)。原子类型对象的主要特点就是从不同线程访问不会导致数据竞争。因此从不同线程访问某个原子对象是良性(well-defined)行为,而通常对于非原子类型而言,并发访问某个对象(如果不做任何同步操作)会导致未定义(undifined)行为发生。

atomic是C++标准程序库中的一个头文件,定义了C++11标准中的一些表示线程、并发控制时原子操作的类与方法等。此头文件主要声明了两大类原子对象:std::atomic和std::atomic_flag,另外还声明了一套C风格的原子类型和与C兼容的原子操作的函数。在多线程并发执行时,原子操作是线程不会被打断的执行片段。一些程序设计更为注重性能和效率,需要开发lock-free的算法和数据结构,这就需要更为底层的原子操作与原子类型。原子类型对象的主要特点就是从不同线程并发访问是良性(well-defined)行为,不会导致竞争危害。与之相反,不做适当控制就并发访问非原子对象则会导致未定义(undifined)行为。

atomic_flag类:是一种简单的原子布尔类型,只支持两种操作:test_and_set(flag=true)和clear(flag=false)。跟std::atomic的其它所有特化类不同,它是锁无关的。结合std::atomic_flag::test_and_set()和std::atomic_flag::clear(),std::atomic_flag对象可以当作一个简单的自旋锁(spin lock)使用。atomic_flag只有默认构造函数,禁用拷贝构造函数,移动构造函数实际上也禁用。如果在初始化时没有明确使用宏ATOMIC_FLAG_INIT初始化,那么新创建的std::atomic_flag对象的状态是未指定的(unspecified),既没有被set也没有被clear;如果使用该宏初始化,该std::atomic_flag对象在创建时处于clear状态。

(1)、test_and_set:返回该std::atomic_flag对象当前状态,检查flag是否被设置,若被设置直接返回true,若没有设置则设置flag为true后再返回false。该函数是原子的。

(2)、clear:清除std::atomic_flag对象的标志位,即设置atomic_flag的值为false。

std::atomic类模板:std::atomic比std::atomic_flag功能更加完善。c++11标准库std::atomic提供了针对bool类型、整形(integral)和指针类型的特化实现。每个std::atomic模板的实例化和完全特化定义一个原子类型。若一个线程写入原子对象,同时另一个线程从它读取,则行为良好定义。而且,对原子对象的访问可以按std::memory_order所指定建立线程间同步,并排序非原子的内存访问。std::atomic可以以任何可平凡复制(Trivially Copyable)的类型T实例化。std::atomic既不可复制亦不可移动。

除了std::atomic和std::atomic_flag外,还包括了基于std::atomic_flag类的C风格API和基于std::atomic类模板的C风格API。

与原子对象初始化相关的两个宏:

(1)、ATOMIC_VAR_INIT(val):初始化std::atomic对象。This macro expands to a token sequence suitable to initialize an atomic object (of static storage duration) with a value of val. This macro exists for compatibility with C implementations, in which it is used as a constructor-like function for(default-constructed) atomic objects; In C++, this initialization may be performed directly by the initialization constructor.

(2)、ATOMIC_FLAG_INIT:初始化std::atomic_flag对象。This macro is defined in such a way that it can be used to initialize an object of type atomic_flag to the clear state.

std::atomic:Objects of atomic types contain a value of a particular type (T). The main characteristic of atomic objects is that access to this contained value from different threads cannot cause data races (i.e., doing that is well-defined behavior, with accesses properly sequenced). Generally, for all other objects, the possibility of causing a data race for accessing the same object concurrently qualifies the operation as undefined behavior. Additionally, atomic objects have the ability to synchronize access to other non-atomic objects in their threads by specifying different memory orders.

std::atomic_flag:Atomic flags are boolean atomic objects that support two operations:test-and-set and clear.

下面是从其他文章中copy的测试代码,详细内容介绍可以参考对应的reference:

[cpp] view plain copy#include "atomic.hpp"

#include

#include

#include

#include

#include

namespace atomic {

/////////////////////////////////////////////////////

// reference: https://www.cplusplus.com/reference/atomic/atomic/atomic/

std::atomic ready(false);

// atomic_flag::atomic_flag: Constructs an atomic_flag object

// The atomic_flag is in an unspecified state on construction (either set or clear),

// unless it is explicitly initialized to ATOMIC_FLAG_INIT.

std::atomic_flag winner = ATOMIC_FLAG_INIT;

void count1m(int id)

{

while (!ready) { std::this_thread::yield(); } // wait for the ready signal

for (volatile int i = 0; i < 1000000; ++i) {} // go!, count to 1 million

if (!winner.test_and_set()) { std::cout << "thread #" << id << " won!\n"; }

};

int test_atomic_atomic()

{

// atomic::atomic: Constructs an atomic object

std::vector threads;

std::cout << "spawning 10 threads that count to 1 million...\n";

for (int i = 1; i <= 10; ++i) threads.push_back(std::thread(count1m, i));

ready = true;

for (auto& th : threads) th.join();

return 0;

}

/////////////////////////////////////////////////////////////////////

// reference: https://www.cplusplus.com/reference/atomic/atomic/compare_exchange_weak/

// a simple global linked list:

struct Node { int value; Node* next; };

std::atomic list_head(nullptr);

void append(int val)

{ // append an element to the list

Node* oldHead = list_head;

Node* newNode = new Node{ val, oldHead };

// what follows is equivalent to: list_head = newNode, but in a thread-safe way:

while (!list_head.compare_exchange_weak(oldHead, newNode))

newNode->next = oldHead;

}

int test_atomic_compare_exchange_weak()

{

// atomic::compare_exchange_weak: Compares the contents of the atomic object's contained value with expected:

// -if true, it replaces the contained value with val(like store).

// - if false, it replaces expected with the contained value

// spawn 10 threads to fill the linked list:

std::vector threads;

for (int i = 0; i<10; ++i) threads.push_back(std::thread(append, i));

for (auto& th : threads) th.join();

// print contents:

for (Node* it = list_head; it != nullptr; it = it->next)

std::cout << ' ' << it->value;

std::cout << '\n';

// cleanup:

Node* it; while (it = list_head) { list_head = it->next; delete it; }

return 0;

}

///////////////////////////////////////////////////////////////

// reference: https://www.cplusplus.com/reference/atomic/atomic/exchange/

std::atomic winner_(false);

void count1m_(int id)

{

while (!ready) {} // wait for the ready signal

for (int i = 0; i<1000000; ++i) {} // go!, count to 1 million

if (!winner_.exchange(true)) { std::cout << "thread #" << id << " won!\n"; }

};

int test_atomic_exchange()

{

// atomic::exchange: Replaces the contained value by val and returns the value it had immediately before

std::vector threads;

std::cout << "spawning 10 threads that count to 1 million...\n";

for (int i = 1; i <= 10; ++i) threads.push_back(std::thread(count1m_, i));

ready = true;

for (auto& th : threads) th.join();

return 0;

}

/////////////////////////////////////////////////////////

// reference: https://www.cplusplus.com/reference/atomic/atomic/load/

std::atomic foo(0);

void set_foo(int x)

{

foo.store(x, std::memory_order_relaxed); // set value atomically

}

void print_foo()

{

int x;

do {

x = foo.load(std::memory_order_relaxed); // get value atomically

} while (x == 0);

std::cout << "foo: " << x << '\n';

}

int test_atomic_load()

{

// atomic::load: Returns the contained value.

// The operation is atomic and follows the memory ordering specified by sync.

std::thread first(print_foo);

std::thread second(set_foo, 10);

first.join();

second.join();

return 0;

}

////////////////////////////////////////////////////////////////

// reference: https://www.cplusplus.com/reference/atomic/atomic/operator=/

std::atomic foo_ = 0;

void set_foo_(int x)

{

foo_ = x;

}

void print_foo_()

{

while (foo_ == 0) { // wait while foo_=0

std::this_thread::yield();

}

std::cout << "foo_: " << foo_ << '\n';

}

int test_atomic_operator()

{

// atomic::operator=: Replaces the stored value by val.

// This operation is atomic and uses sequential consistency (memory_order_seq_cst).

// To modify the value with a different memory ordering

std::thread first(print_foo_);

std::thread second(set_foo_, 10);

first.join();

second.join();

return 0;

}

///////////////////////////////////////////////////////////////////

// reference: https://www.cplusplus.com/reference/atomic/atomic/store/

int test_atomic_store()

{

// atomic::store: Replaces the contained value with val.

// The operation is atomic and follows the memory ordering specified by sync.

std::thread first(print_foo);

std::thread second(set_foo, 10);

first.join();

second.join();

return 0;

}

/////////////////////////////////////////////////////////////////////

// reference: https://www.cplusplus.com/reference/atomic/atomic_flag/clear/

std::atomic_flag lock_stream = ATOMIC_FLAG_INIT;

std::stringstream stream;

void append_number(int x)

{

while (lock_stream.test_and_set()) {}

stream << "thread #" << x << '\n';

lock_stream.clear();

}

int test_atomic_flag_atomic_clear()

{

// atomic_flag::clear: Clears the atomic_flag (i.e., sets it to false)

//Clearing the atomic_flag makes the next call to member atomic_flag::test_and_set on this object return false.

// The operation is atomic and follows the memory ordering specified by sync.

// atomic_flag::test_and_set: Sets the atomic_flag and returns whether it was already set immediately before the call

// The entire operation is atomic (an atomic read-modify-write operation): the value is not affected by other threads

// between the instant its value is read (to be returned) and the moment it is modified by this function.

std::vector threads;

for (int i = 1; i <= 10; ++i) threads.push_back(std::thread(append_number, i));

for (auto& th : threads) th.join();

std::cout << stream.str();

return 0;

}

} // namespace atomic