spark-3.0 application 调度算法解析
程序员文章站
2024-01-29 13:31:52
spark 各个版本的application 调度算法还是有这明显的不同之处的。从spark1.3.0 到 spark 1.6.1、spark2.x 到 现在最新的spark 3.x ,调度算法有了一定的修改。下面大家一起学习一下,最新的spark 版本spark-3.0的Application 调 ......
spark 各个版本的application 调度算法还是有这明显的不同之处的。从spark1.3.0 到 spark 1.6.1、spark2.x 到 现在最新的spark 3.x ,调度算法有了一定的修改。下面大家一起学习一下,最新的spark 版本spark-3.0的application 调度机制。
private def startexecutorsonworkers(): unit = {
// right now this is a very simple fifo scheduler. we keep trying to fit in the first app
// in the queue, then the second app, etc.
for (app <- waitingapps) {
//如果在 spark-submmit 脚本中,指定了每个executor 多少个 cpu core,
// 则每个executor 分配该个数的 core,
// 否则 默认每个executor 只分配 1 个 cpu core
val coresperexecutor = app.desc.coresperexecutor.getorelse(1)
// if the cores left is less than the coresperexecutor,the cores left will not be allocated
// 当前 app 还需要分配的 core 数 不能 小于 单个 executor 启动 的 cpu core 数
if (app.coresleft >= coresperexecutor) {
// filter out workers that don't have enough resources to launch an executo/*ku*/r
// 过滤出 状态 为 alive,并且还能 发布 executor 的 worker
// 按照剩余的 cpu core 数 倒序
val usableworkers = workers.toarray.filter(_.state == workerstate.alive)
.filter(canlaunchexecutor(_, app.desc))
.sortby(_.coresfree).reverse
if (waitingapps.length == 1 && usableworkers.isempty) {
logwarning(s"app ${app.id} requires more resource than any of workers could have.")
}
// todo: 默认采用 spreadoutapps 调度算法, 将 application需要的 executor资源 分派到 多个 worker 上去
val assignedcores = scheduleexecutorsonworkers(app, usableworkers, spreadoutapps)
// now that we've decided how many cores to allocate on each worker, let's allocate them
for (pos <- 0 until usableworkers.length if assignedcores(pos) > 0) {
allocateworkerresourcetoexecutors(
app, assignedcores(pos), app.desc.coresperexecutor, usableworkers(pos))
}
}
}
}
判断一个 worker 是否可以发布 executor
private def canlaunchexecutor(worker: workerinfo, desc: applicationdescription): boolean = {
canlaunch(
worker,
desc.memoryperexecutormb,
desc.coresperexecutor.getorelse(1),
desc.resourcereqsperexecutor)
}
让我们看一看里面的 canlaunch 方法
private def canlaunch(
worker: workerinfo,
memoryreq: int,
coresreq: int,
resourcerequirements: seq[resourcerequirement])
: boolean = {
// worker 上 空闲的 内存值 要 大于等于 请求的 内存值
val enoughmem = worker.memoryfree >= memoryreq
// worker 上 空闲的 core 数 要 大于等于 请求的 core数
val enoughcores = worker.coresfree >= coresreq
// worker 是否满足 executor 请求的资源
val enoughresources = resourceutils.resourcesmeetrequirements(
worker.resourcesamountfree, resourcerequirements)
enoughmem && enoughcores && enoughresources
}
回到上面的 scheduleexecutorsonworkers
private def scheduleexecutorsonworkers(
app: applicationinfo,
usableworkers: array[workerinfo],
spreadoutapps: boolean): array[int] = {
val coresperexecutor = app.desc.coresperexecutor
val mincoresperexecutor = coresperexecutor.getorelse(1)
// 默认情况下 是 开启 oneexecutorperworker 机制的,也就是默认是在 一个 worker 上 只启动 一个 executor的
// 如果在spark -submit 脚本中设置了coresperexecutor , 在worker资源充足的时候,则 会在每个worker 上,启动多个executor
val oneexecutorperworker = coresperexecutor.isempty
val memoryperexecutor = app.desc.memoryperexecutormb
val resourcereqsperexecutor = app.desc.resourcereqsperexecutor
val numusable = usableworkers.length
val assignedcores = new array[int](numusable) // number of cores to give to each worker
val assignedexecutors = new array[int](numusable) // number of new executors on each worker
var corestoassign = math.min(app.coresleft, usableworkers.map(_.coresfree).sum)
// 判断 worker节点是否能够启动executor
def canlaunchexecutorforapp(pos: int): boolean = {
val keepscheduling = corestoassign >= mincoresperexecutor
val enoughcores = usableworkers(pos).coresfree - assignedcores(pos) >= mincoresperexecutor
val assignedexecutornum = assignedexecutors(pos)
// if we allow multiple executors per worker, then we can always launch new executors.
// otherwise, if there is already an executor on this worker, just give it more cores.
// 如果spark -submit 脚本中设置了coresperexecutor值,
// 并且当前 这个worker 还没有为这个 application 分配 过 executor ,
val launchingnewexecutor = !oneexecutorperworker || assignedexecutornum == 0
// todo: 可以启动新的 executor
if (launchingnewexecutor) {
val assignedmemory = assignedexecutornum * memoryperexecutor
val enoughmemory = usableworkers(pos).memoryfree - assignedmemory >= memoryperexecutor
val assignedresources = resourcereqsperexecutor.map {
req => req.resourcename -> req.amount * assignedexecutornum
}.tomap
val resourcesfree = usableworkers(pos).resourcesamountfree.map {
case (rname, free) => rname -> (free - assignedresources.getorelse(rname, 0))
}
val enoughresources = resourceutils.resourcesmeetrequirements(
resourcesfree, resourcereqsperexecutor)
val underlimit = assignedexecutors.sum + app.executors.size < app.executorlimit
keepscheduling && enoughcores && enoughmemory && enoughresources && underlimit
} else {
// we're adding cores to an existing executor, so no need
// to check memory and executor limits
// todo: 不满足启动新的 executor条件,则 在 老的 executor 上 追加 core 数
keepscheduling && enoughcores
}
}
// keep launching executors until no more workers can accommodate any
// more executors, or if we have reached this application's limits
var freeworkers = (0 until numusable).filter(canlaunchexecutorforapp)
while (freeworkers.nonempty) {
freeworkers.foreach { pos =>
var keepscheduling = true
while (keepscheduling && canlaunchexecutorforapp(pos)) {
corestoassign -= mincoresperexecutor
assignedcores(pos) += mincoresperexecutor
// if we are launching one executor per worker, then every iteration assigns 1 core
// to the executor. otherwise, every iteration assigns cores to a new executor.
if (oneexecutorperworker) {
//todo: 如果该worker节点不能启动新的 executor,则在老的executor 上 分配 mincoresperexecutor 个 cpu core(此时该值默认 为 1 )
assignedexecutors(pos) = 1
} else {
//todo: 如果该worker节点可以启动新的 executor,则在新的executor 上 分配 mincoresperexecutor 个 cpu core(此时该值为 spark-submit脚本配置的 coresperexecutor 值)
assignedexecutors(pos) += 1
}
// spreading out an application means spreading out its executors across as
// many workers as possible. if we are not spreading out, then we should keep
// scheduling executors on this worker until we use all of its resources.
// otherwise, just move on to the next worker.
if (spreadoutapps) {
// todo: 这里传入 keepscheduling = false , 就是每次 worker上只分配 一次 core ,然后 到 下一个 worker 上 再去 分配 core,直到 worker
// todo: 完成一次遍历
keepscheduling = false
}
}
}
freeworkers = freeworkers.filter(canlaunchexecutorforapp)
}
// 返回每个worker节点分配的cpu核数
assignedcores
}
再来分析 allocateworkerresourcetoexecutors
private def allocateworkerresourcetoexecutors(
app: applicationinfo,
assignedcores: int,
coresperexecutor: option[int],
worker: workerinfo): unit = {
// if the number of cores per executor is specified, we divide the cores assigned
// to this worker evenly among the executors with no remainder.
// otherwise, we launch a single executor that grabs all the assignedcores on this worker.
val numexecutors = coresperexecutor.map { assignedcores / _ }.getorelse(1)
val corestoassign = coresperexecutor.getorelse(assignedcores)
for (i <- 1 to numexecutors) {
val allocated = worker.acquireresources(app.desc.resourcereqsperexecutor)
// todo : 当前 这个 application 追加 一次 executor
val exec = app.addexecutor(worker, corestoassign, allocated)
//todo: 给worker 线程 发送 launchexecutor 命令
launchexecutor(worker, exec)
app.state = applicationstate.running
}
}
ok,至此,spark最新版本 spark-3.0的application 调度算法分析完毕!!!