欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python pandas 对时间序列文件处理的实例

程序员文章站 2024-01-28 15:37:22
如下所示: import pandas as pd from numpy import * import matplotlib.pylab as plt i...

如下所示:

import pandas as pd
from numpy import *
import matplotlib.pylab as plt
import copy

def read(filename):
 dat=pd.read_csv(filename,iterator=True)
 loop = True
 chunkSize = 1000000
 R=[]
 while loop:
  try:
   data = dat.get_chunk(chunkSize)
   data=data.loc[:,'B':'C'] # 切片
   data=data[data.B==855]  #条件选择
   data['C']=pd.to_datetime(data['C']) # 转换成时间格式
   data=data.set_index(['C'])    # 设置索引
   data.loc[:,'D']=array([1]*len(data)) #增加一列
   data=data.resample('D').sum() #按天求和
   data=data.loc[:,'D'] #截取
   data.fillna(0) #填充缺失值
   R.append(data)
  except StopIteration:
   loop = False
   print ("Iteration is stopped.")
 R.to_csv('855_pay.csv') # 保存

def read2(filename):
 reader=pd.read_csv(filename,iterator=True)
 loop = True
 chunkSize = 100000
 chunks = []
 while loop:
  try:
   chunk = reader.get_chunk(chunkSize)
   chunks.append(chunk)
  except StopIteration:
   loop = False
   print ("Iteration is stopped.")
 df = pd.concat(chunks, ignore_index=True)
 return df

def read3save(filename):
 dat=pd.read_csv(filename)
 #data = dat.get_chunk(chunkSize)
 data=dat.loc[:,'B':'C'] # 切片
 data=data[data.B==855]#条件选择
 print(shape(data))
 data['C']=pd.to_datetime(data['C']) # 转换成时间格式
 data=data.set_index(['C'])# 设置索引
 if len(data)==0:
  return
 data.loc[:,'D']=array([1]*len(data)) #增加一列
 data=data.resample('D').sum() #按天求和
 data=data.loc[:,'D'] #截取
 data.fillna(0) #填充缺失值
 data.to_csv('855_pay.csv',mode='a') # 保存

def loadDataSet(fileName, delim='\t'):
 fr = open(fileName)
 stringArr = [line.strip().split(delim) for line in fr.readlines()]
 datArr = [list(map(float,line)) for line in stringArr]
 return mat(datArr)

def getShopData():
 fr = open('shopInfo.txt')
 shopID = [line.strip().split('\n') for line in fr.readlines()]
 # datArr = [list(map(float,line))for line in stringArr]
 for i in range(1,9):
  name="user_pay.001.00%d"%i
  dat=pd.read_csv(name)
  #data = dat.get_chunk(chunkSize)
  data=dat.loc[:,'B':'C'] # 切片
  for factor in shopID:
   data=data[data.B==int(str(factor[0]))]#条件选择
   print(shape(data))
   if len(data)==0: continue
   data['C']=pd.to_datetime(data['C']) # 转换成时间格式
   data=data.set_index(['C'])# 设置索引
   data.loc[:,'D']=array([1]*len(data)) #增加一列
   data=data.resample('D').sum() #按天求和
   data=data.loc[:,'D'] #截取
   data.fillna(0) #填充缺失值
   s=str(factor[0])
   savename='D:\python\data\%s_pay.csv'%s
   data.to_csv(savename,mode='a') # 保存
   del dat
 print("over")

def tset(filename):
 dat=pd.read_csv(filename)
 #data = dat.get_chunk(chunkSize)
 data=dat.loc[:,'B':'C'] # 切片
 data=data[data.B==855]#条件选择
 print(shape(data))
 data['C']=pd.to_datetime(data['C']) # 转换成时间格式
 data=data.set_index(['C'])# 设置索引
 if len(data)==0:
  return
 data.loc[:,'D']=array([1]*len(data)) #增加一列
 data=data.resample('D').sum() #按天求和
 data=data.loc[:,'D'] #截取
 data.fillna(0) #填充缺失值
 #data.to_csv('855_pay.csv',mode='a') # 保存
 s='my'
 savename='D:\python\data\%s_pay.csv'%s
 data.to_csv(savename,mode='a') # 保存
  
def getShopData2(filename):
  import csv
 # fr = open('shopInfo.txt')
  # shopID = [line.strip().split('\n') for line in fr.readlines()]
 # datArr = [list(map(float,line))for line in stringArr]
 #for i in range(1,9):
 #name="user_pay.001.00%d"%i
  dat=pd.read_csv(filename)
  #data = dat.get_chunk(chunkSize)
  data=dat.loc[:,'B':'C'] # 切片
  data['C']=pd.to_datetime(data['C']) # 转换成时间格式
  data=data.set_index(['C'])# 设置索引
  data.loc[:,'D']=array([1]*len(data)) #增加一列
  for i in range(1,2001):
   d=copy.copy(data)
   d=d[data.B==i]#条件选择
   #print(shape(d))
   print(i)
   if len(d)==0: continue
   d=d.resample('D').sum() #按天求和
   d=d.loc[:,'D'] #截取
   d.fillna(0) #填充缺失值
   s=str(i)
   #print(s)
   savename='D:\python\data2\%s_pay.csv'%s
   c=open(savename,'a')
   writer=csv.writer(c)
   writer.writerow(['C','D'])
   c.close()
   d.to_csv(savename,mode='a') # 保存
   # del dat
   print("over")
def formatData():
  #fr = open('shopInfo.txt')
  #shopID = [line.strip().split('\n') for line in fr.readlines()]
 # datArr = [list(map(float,line))for line in stringArr]
  #data = dat.get_chunk(chunkSize)
  for i in range(1,2001):
   s=str(i)
   print(s)
   name='D:\python\data2\%s_pay.csv'%s
   dat=pd.read_csv(name)
   data['C']=pd.to_datetime(data['C']) # 转换成时间格式
   data=data.set_index(['C'])# 设置索引
   data=data.resample('D').sum() #按天求和
   data.fillna(0) #填充缺失值
   savename='D:\python\data3\%s_pay.csv'%s
   data.to_csv(savename,mode='w') # 保存
   del dat
   print("over")

以上这篇python pandas 对时间序列文件处理的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。