欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python脚本实现验证码识别

程序员文章站 2024-01-27 21:16:34
最近在折腾验证码识别。最终的脚本的识别率在92%左右,9000张验证码大概能识别出八千三四百张左右。好吧,其实是验证码太简单。下面就是要识别的验证码。 我主要用的是...

最近在折腾验证码识别。最终的脚本的识别率在92%左右,9000张验证码大概能识别出八千三四百张左右。好吧,其实是验证码太简单。下面就是要识别的验证码。

python脚本实现验证码识别python脚本实现验证码识别

我主要用的是python中的pil库。

首先进行二值化处理。由于图片中的噪点颜色比较浅,所以可以设定一个阈值直接过滤掉。这里我设置的阈值是150,像素大于150的赋值为1,小于的赋为0.

def set_table(a):
  table = []     
  for i in range(256):
    if i < a:
      table.append(0)
    else:
      table.append(1)
  return table

img = image.open("d:/python/单个字体/a"+str(i)+".jpg")
pix = img.load()

#将图片进行灰度化处理
img1 = img.convert('l')

#阈值为150,参数为1,将图片进行二值化处理
img2 = img1.point(set_table(150),'1') 

处理后的图片如下。

python脚本实现验证码识别

阈值不同产生的不同效果:

python脚本实现验证码识别

接下来对图片进行分割。遍历图片中所有像素点,计算每一列像素为0的点的个数(jd)。对于相邻两列,若其中一列jd=0,而另一列jd!=0,则可以认为这一列是验证码中字符边界,由此对验证码进行分割。这样分割能达到比较好的效果,分割后得到的字符图片几乎能与模板完全相同。

(width,height) = img2.size
pix2 = img2.load()
x0 = []
y0 = []

for x in range(1,width):
  jd = 0
  # print x
  for y in range(1,height):
    # print y
    if pix2[x,y] == 0:
      jd+=1
  y0.append(jd)
  if jd > 0:
    x0.append(x)

#分别对各个字符边界进行判断,这里只举出一个    
for a in range(1,width):
  if (y0[a] != 0)&(y0[a+1] != 0):
    sta1 = a+1
    break

分割完成后,对于识别,目前有几种方法。可以遍历图片的每一个像素点,获取像素值,得到一个字符串,将该字符串与模板的字符串进行比较,计算汉明距离或者编辑距离(即两个字符串的差异度),可用python-levenshtein库来实现。

我采用的是比较特征向量来进行识别的。首先设定了4个竖直特征向量,分别计算第0、2、4、6列每一列像素值为0的点的个数,与模板进行比较,若小于阈值则认为该字符与模板相同。为了提高识别率,如果通过竖直特征向量未能识别成功,引入水平特征向量继续识别,原理与竖直特征向量相同。

另外,还可以通过局部特征进行识别。这对于加入了旋转干扰的验证码有很好效果。由于我写的脚本识别率已经达到了要求,所以并没有用到这个。

最后的结果是这样的:

python脚本实现验证码识别

最终在模板库只有25条的情况下,识别率在92%左右(总共测试了一万六千张验证码)。好吧,只能说验证码太简单。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。