欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

关于tf.reverse_sequence()简述

程序员文章站 2024-01-27 14:26:16
tf.reverse_sequence()简述 在看bidirectional_dynamic_rnn()的源码的时候,看到了代码中有调用 reverse_sequence()这一方...

tf.reverse_sequence()简述

在看bidirectional_dynamic_rnn()的源码的时候,看到了代码中有调用 reverse_sequence()这一方法,于是又回去看了下这个函数的用法,发现还是有点意思的。根据名字就可以能看得出,这个方法主要是用来翻转序列的,就像双线lstm中在反向传播那里需要从下文往上文处理一样,需要对序列做一个镜像的翻转处理。

先来看一下这个方法的定义:

reverse_sequence(
  input,
  seq_lengths,
  seq_axis=none,
  batch_axis=none,
  name=none,
  seq_dim=none,
  batch_dim=none)

其中input是输入的需要翻转的目标张量,seq_lengths是一个张量;

其元素是input中每一处需要翻转时翻转的长度,在双向lstm中这个值统一被设为输入语句的长度,代表着整句话都需要被翻转,而实际上张量中的元素值可以是不同的,下面的例子中就可以看出;

seq_axis和seq_dim的关系,在源码中做了如下操作:

seq_axis = deprecation.deprecated_argument_lookup("seq_axis", seq_axis,
                          "seq_dim", seq_dim)

返回中return gen_array_ops.reverse_sequence(..., seq_dim=seq_axis,...),同理,对于batch_axis和batch_dim也是相同的处理。意义上来说,按照官方给出的解释,“此操作首先沿着维度batch_axis对input进行分割,并且对于每个切片 i,将前 seq_lengths 元素沿维度 seq_axis 反转”。实际上通俗来理解,就是对于张量input中的第batch_axis维中的每一个子张量,在这个子张量的第seq_axis维上进行翻转,翻转的长度为 seq_lengths 张量中对应的数值。

举个例子,如果 batch_axis=0,seq_axis=1,则代表我希望每一行为单位分开处理,对于每一行中的每一列进行翻转。相反的,如果 batch_axis=1,seq_axis=0,则是以列为单位,对于每一列的张量,进行相应行的翻转。回头去看双向rnn的源码,就可以理解当time_major这一属性不同时,time_dim 和 batch_dim 这一对组合的取值为什么恰好是相反的了。

写一个简单的测试代码:

a = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
l = tf.constant([1,2,3],tf.int64) # 每一次翻转长度分别为1,2,3.由于a是(3,3)维的,所以l中数值最大只能是3
x = tf.reverse_sequence(a,seq_lengths=l,seq_axis = 0,batch_axis= 1) # 以列为单位进行翻转,翻转的是每一行的元素
y = tf.reverse_sequence(a,seq_lengths=l,seq_axis = 1,batch_axis= 0) # 以行为单位进行翻转,翻转的是每一列的元素
with tf.session() as sess:
  print(sess.run(x))
  print(sess.run(y))

结果如下:

# 每一列上的元素种类没有发生变化,但是从每一行来看,行的顺序分别翻转了前1,前2,前3个元素
[[1 5 9]
 [4 2 6]
 [7 8 3]]
# 每一行上的元素种类没有发生变化,但是从每一列来看,列的顺序分别翻转了前1,前2,前3个元素
[[1 2 3]
 [5 4 6]
 [9 8 7]]

以上这篇关于tf.reverse_sequence()简述就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。