欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

mysql为什么用B+树,innodb和myisam的区别?

程序员文章站 2024-01-26 22:49:58
...
  • Mysql索引的本质

  • Mysql索引的底层原理

  • Mysql索引的实战经验

面试

问:数据库中最常见的慢查询优化方式是什么?

同学A:加索引。

问:为什么加索引能优化慢查询?

同学A:...不知道

同学B:因为索引其实就是一种优化查询的数据结构,比如Mysql中的索引是用B+树实现的,而B+树就是一种数据结构,可以优化查询速度,可以利用索引快速查找数据,所以能优化查询。

问:你知道哪些数据结构可以提高查询速度?(听到这个问题就感觉此处有坑...)

同学B:哈希表、完全平衡二叉树、B树、B+树等等。

问:那这些数据结构既然都能优化查询速度,Mysql为何选择使用B+树?

同学B:...不知道

提问

SHOW INDEX FROM employees.titles;

mysql为什么用B+树,innodb和myisam的区别?

有一个titles表,主键由empno,title,fromdate三个字段组成。

那么以下几个语句会用到索引吗?

  1. select * from employees.titles where emp_no=1
  2. select * from employees.titles where title='1'
  3. select * from employees.titles where emp_no='1' and title=1
  4. select * from employees.titles where title='1' and emp_no=1
  • 1

为什么哈希表、完全平衡二叉树、B树、B+树都可以优化查询,为何Mysql独独喜欢B+树?

哈希表有什么特点?

假如有这么一张表(表名:sanguo):

mysql为什么用B+树,innodb和myisam的区别?

现在对name字段建立哈希索引:

mysql为什么用B+树,innodb和myisam的区别?

注意字段值所对应的数组下标是哈希算法随机算出来的,所以可能出现哈希冲突。那么对于这样一个索引结构,现在来执行下面的sql语句: 

select * from sanguo where name='周瑜'
  • 1

可以直接对‘周瑜’按哈希算法算出来一个数组下标,然后可以直接从数据中取出数据并拿到所对应那一行数据的地址,进而查询那一行数据。 那么如果现在执行下面的sql语句:

select * from sanguo where name>'周瑜'
  • 1

则无能为力,因为哈希表的特点就是可以快速的精确查询,但是不支持范围查询

如果用完全平衡二叉树呢?

还是上面的表数据用完全平衡二叉树表示如下图(为了简单,数据对应的地址就不画在图中了。):

mysql为什么用B+树,innodb和myisam的区别?

图中的每一个节点实际上应该有四部分:

  1. 左指针,指向左子树

  2. 键值

  3. 键值所对应的数据的存储地址

  4. 右指针,指向右子树

另外需要提醒的是,二叉树是有顺序的,简单的说就是“左边的小于右边的”假如我们现在来查找‘周瑜’,需要找2次(第一次曹操,第二次周瑜),比哈希表要多一次。而且由于完全平衡二叉树是有序的,所以也是支持范围查找的。

如果用B树呢?

还是上面的表数据用B树表示如下图(为了简单,数据对应的地址就不画在图中了。):

mysql为什么用B+树,innodb和myisam的区别?

可以发现同样的元素,B树的表示要比完全平衡二叉树要“矮”,原因在于B树中的一个节点可以存储多个元素。

如果用B+树呢?

还是上面的表数据用B+树表示如下图(为了简单,数据对应的地址就不画在图中了。):

mysql为什么用B+树,innodb和myisam的区别?

我们可以发现同样的元素,B+树的表示要比B树要“胖”,原因在于B+树中的非叶子节点会冗余一份在叶子节点中,并且叶子节点之间用指针相连。

那么B+树到底有什么优势呢?

这里我们用“反证法”,假如我们现在就用完全平衡二叉树作为索引的数据结构,我们来看一下有什么不妥的地方。实际上,索引也是很“大”的,因为索引也是存储元素的,我们的一个表的数据行数越多,那么对应的索引文件其实也是会很大的,实际上也是需要存储在磁盘中的,而不能全部都放在内存中,所以我们在考虑选用哪种数据结构时,我们可以换一个角度思考,哪个数据结构更适合从磁盘中读取数据,或者哪个数据结构能够提高磁盘的IO效率。回头看一下完全平衡二叉树,当我们需要查询“张飞”时,需要以下步骤

  1. 从磁盘中取出“曹操”到内存,CPU从内存取出数据进行比较,“张飞”<“曹操”,取左子树(产生了一次磁盘IO)

  2. 从磁盘中取出“周瑜”到内存,CPU从内存取出数据进行比较,“张飞”>“周瑜”,取右子树(产生了一次磁盘IO)

  3. 从磁盘中取出“孙权”到内存,CPU从内存取出数据进行比较,“张飞”>“孙权”,取右子树(产生了一次磁盘IO)

  4. 从磁盘中取出“黄忠”到内存,CPU从内存取出数据进行比较,“张飞”=“张飞”,找到结果(产生了一次磁盘IO)

同理,回头看一下B树,我们发现只发送三次磁盘IO就可以找到“张飞”了,这就是B树的优点:一个节点可以存储多个元素,相对于完全平衡二叉树所以整棵树的高度就降低了,磁盘IO效率提高了

而B+树是B树的升级版,只是把非叶子节点冗余一下,这么做的好处是为了提高范围查找的效率

到这里可以总结出来,Mysql选用B+树这种数据结构作为索引,可以提高查询索引时的磁盘IO效率,并且可以提高范围查询的效率,并且B+树里的元素也是有序的。

那么,一个B+树的节点中到底存多少个元素合适呢?

其实也可以换个角度来思考B+树中一个节点到底多大合适?

答案是:B+树中一个节点为一页或页的倍数最为合适。因为如果一个节点的大小小于1页,那么读取这个节点的时候其实也会读出1页,造成资源的浪费;如果一个节点的大小大于1页,比如1.2页,那么读取这个节点的时候会读出2页,也会造成资源的浪费;所以为了不造成浪费,所以最后把一个节点的大小控制在1页、2页、3页、4页等倍数页大小最为合适。

那么,Mysql中B+树的一个节点大小为多大呢?

这个问题的答案是“1页”,这里说的“页”是Mysql自定义的单位(其实和操作系统类似),Mysql的Innodb引擎中一页的默认大小是16k(如果操作系统中一页大小是4k,那么Mysql中1页=操作系统中4页),可以使用命令SHOW GLOBAL STATUS like 'Innodb_page_size'; 查看。

mysql为什么用B+树,innodb和myisam的区别?

并且还可以告诉你的是,一个节点为1页就够了。

为什么一个节点为1页(16k)就够了?

解决这个问题,我们先来看一下Mysql中利用B+树的具体实现。

Mysql中MyISAM和innodb使用B+树

mysql为什么用B+树,innodb和myisam的区别?

通常我们认为B+树的非叶子节点不存储数据,只有叶子节点才存储数据;而B树的非叶子和叶子节点都会存储数据,会导致非叶子节点存储的索引值会更少,树的高度相对会比B+树高,平均的I/O效率会比较低,所以使用B+树作为索引的数据结构,再加上B+树的叶子节点之间会有指针相连,也方便进行范围查找。上图的data区域两个存储引擎会有不同。

MyISAM中的B+树

MYISAM中叶子节点的数据区域存储的是数据记录的地址

主键索引

mysql为什么用B+树,innodb和myisam的区别?

辅助索引

mysql为什么用B+树,innodb和myisam的区别?

MyISAM存储引擎在使用索引查询数据时,会先根据索引查找到数据地址,再根据地址查询到具体的数据。并且主键索引和辅助索引没有太多区别。

InnoDB中的B+树

InnoDB中主键索引的叶子节点的数据区域存储的是数据记录,辅助索引存储的是主键值

主键索引

 

mysql为什么用B+树,innodb和myisam的区别?

mysql为什么用B+树,innodb和myisam的区别?

辅助索引

mysql为什么用B+树,innodb和myisam的区别?

Innodb中的主键索引和实际数据时绑定在一起的,也就是说Innodb的一个表一定要有主键索引,如果一个表没有手动建立主键索引,Innodb会查看有没有唯一索引,如果有则选用唯一索引作为主键索引,如果连唯一索引也没有,则会默认建立一个隐藏的主键索引(用户不可见)。另外,Innodb的主键索引要比MyISAM的主键索引查询效率要高(少一次磁盘IO),并且比辅助索引也要高很多。所以,我们在使用Innodb作为存储引擎时,我们最好:

  1. 手动建立主键索引

  2. 尽量利用主键索引查询

回到我们的问题:为什么一个节点为1页(16k)就够了?

对着上面Mysql中Innodb中对B+树的实际应用(主要看主键索引),可以发现B+树中的一个节点存储的内容是:

  • 非叶子节点:主键+指针

  • 叶子节点:数据

那么,假设我们一行数据大小为1K,那么一页就能存16条数据,也就是一个叶子节点能存16条数据;再看非叶子节点,假设主键ID为bigint类型,那么长度为8B,指针大小在Innodb源码中为6B,一共就是14B,那么一页里就可以存储16K/14=1170个(主键+指针),那么一颗高度为2的B+树能存储的数据为:117016=18720条,一颗高度为3的B+树能存储的数据为:11701170*16=21902400(千万级条)。所以在InnoDB中B+树高度一般为1-3层,它就能满足千万级的数据存储。在查找数据时一次页的查找代表一次IO,所以通过主键索引查询通常只需要1-3次IO操作即可查找到数据。所以也就回答了我们的问题,1页=16k这么设置是比较合适的,是适用大多数的企业的,当然这个值是可以修改的,所以也能根据业务的时间情况进行调整。

最左前缀原则

我们模拟数据建立一个联合索引

select*,concat(right(emp_no,1),"-",right(title,1),"-",right(from_date,2))from employees.titles limit10;
  • 1

mysql为什么用B+树,innodb和myisam的区别?

那么对应的B+树为

mysql为什么用B+树,innodb和myisam的区别?

我们判断一个查询条件能不能用到索引,我们要分析这个查询条件能不能利用某个索引缩小查询范围

对于 select * from employees.titles where emp_no=1是能用到索引的,因为它能利用上面的索引所有查询范围,首先和第一个节点“4-r-01”比较,1<4,所以可以直接确定结果在左子树,同理,依次按顺序进行比较,逐步可以缩小查询范围。对于 select * from employees.titles where title='1'是不能用到索引的,因为它不能用到上面的索引,和第一节点进行比较时,没有empno这个字段的值,不能确定到底该去左子树还是右子树继续进行查询。对于 select *from employees.titles where title='1' and emp_no=1是能用到索引,按照我们的上面的分析,先用title='1'这个条件和第一个节点进行比较,是没有结果的,但是mysql会对这个sql进行优化,优化之后会将empno=1这个条件放到第一位,从而可以利用索引。

相关标签: 面试类 mysql