Python3 操作符重载方法示例
程序员文章站
2024-01-25 08:46:34
基础知识
实际上,“运算符重载”只是意味着在类方法中拦截内置的操作……当类的实例出现在内置操作中,Python自动调用你的方法,并且你的方法的返回值变成了相应操作的结...
基础知识
实际上,“运算符重载”只是意味着在类方法中拦截内置的操作……当类的实例出现在内置操作中,Python自动调用你的方法,并且你的方法的返回值变成了相应操作的结果。以下是对重载的关键概念的复习:
- 运算符重载让类拦截常规的Python运算。
- 类可重载所有Python表达式运算符
- 类可以重载打印、函数调用、属性点号运算等内置运算
- 重载使类实例的行为像内置类型。
- 重载是通过特殊名称的类方法来实现的。
换句话说,当类中提供了某个特殊名称的方法,在该类的实例出现在它们相关的表达式时,Python自动调用它们。正如我们已经学习过的,运算符重载方法并非必须的,并且通常也不是默认的;如果你没有编写或继承一个运算符重载方法,只是意味着你的类不会支持相应的操作。然而,当使用的时候,这些方法允许类模拟内置对象的接口,因此表现得更一致。
以下代码以Python3.6.1为例
操作符重载方法: 类(class)通过使用特殊名称的方法(len(self))来实现被特殊语法(len())的调用
#coding=utf-8 # specialfuns.py 操作符重载方法 # 类(class)通过使用特殊名称的方法(__len__(self))来实现被特殊语法(len())的调用 # 构造 与 析构 方法 class demo1: # 构造方法, 对象实例化时调用 def __init__(self): print("构造方法") # 析构方法, 对象被回收时调用 def __del__(self): print("析构方法") # new class demo2(object): # __init__之前调用, 一般用于重写父类的__new__方法, 具体使用见 类 文章的 元类 代码部分(http://blog.csdn.net/rozol/article/details/69317339) def __new__(cls): print("new") return object.__new__(cls) # 算术运算 class demo3: def __init__(self, num): self.data = num # + def __add__(self, other): return self.data + other.data # - def __sub__(self, other): return self.data - other.data # * def __mul__(self, other): return self.data * other.data # / def __truediv__(self, other): return self.data / other.data # // def __floordiv__(self, other): return self.data // other.data # % def __mod__(self, other): return self.data % other.data # divmod() def __divmod__(self, other): # 商(10/5),余数(10%5) return self.data / other.data, self.data % other.data # ** def __pow__(self, other): return self.data ** other.data # << def __lshift__(self, other): return self.data << other.data # >> def __rshift__(self, other): return self.data >> other.data # & def __and__(self, other): return self.data & other.data # ^ def __xor__(self, other): return self.data ^ other.data # | def __or__(self, other): return self.data | other.data class none: def __init__(self, num): self.data = num # 反算术运算符(a+b, 若a不支持算术运算符,则寻找b的算术运算符)(注:位置变换, 在原始函数名前+r) class demo4: def __init__(self, num): self.data = num # + def __radd__(self, other): return other.data + self.data # - def __rsub__(self, other): return other.data - self.data # * def __rmul__(self, other): return other.data * self.data # / def __rtruediv__(self, other): return other.data / self.data # // def __rfloordiv__(self, other): return other.data // self.data # % def __rmod__(self, other): return other.data % self.data # divmod() def __rdivmod__(self, other): return other.data / self.data, other.data % self.data # ** def __rpow__(self, other): return other.data ** self.data # << def __rlshift__(self, other): return other.data << self.data # >> def __rrshift__(self, other): return other.data >> self.data # & def __rand__(self, other): return other.data & self.data # ^ def __rxor__(self, other): return other.data ^ self.data # | def __ror__(self, other): return other.data | self.data # 增量赋值运算,(注:位置同原始函数,在原始函数名前+i) class demo5(): def __init__(self, num): self.data = num # += def __iadd__(self, other): return self.data + other # -= def __isub__(self, other): return self.data - other # *= def __imul__(self, other): return self.data * other # /= def __itruediv__(self, other): return self.data / other # //= def __ifloordiv__(self, other): return self.data // other # %= def __imod__(self, other): return self.data % other # **= def __ipow__(self, other): return self.data ** other # <<= def __ilshift__(self, other): return self.data << other # >>= def __irshift__(self, other): return self.data >> other # &= def __iand__(self, other): return self.data & other # ^= def __ixor__(self, other): return self.data ^ other # |= def __ior__(self, other): return self.data | other # 比较运算符 class demo6: def __init__(self, num): self.data = num # < def __lt__(self, other): return self.data < other.data # <= def __le__(self, other): return self.data <= other.data # == def __eq__(self, other): return self.data == other.data # != def __ne__(self, other): return self.data != other.data # > def __gt__(self, other): return self.data > other.data # >= def __ge__(self, other): return self.data >= other.data # 一元操作符 class demo7: def __init__(self, num): self.data = num # + 正号 def __pos__(self): return +abs(self.data) # - 负号 def __neg__(self): return -abs(self.data) # abs() 绝对值 def __abs__(self): return abs(self.data) # ~ 按位取反 def __invert__(self): return ~self.data # complex() 字符转数字 def __complex__(self): return 1+2j # int() 转为整数 def __int__(self): return 123 # float() 转为浮点数 def __float__(self): return 1.23 # round() 近似值 def __round__(self): return 1.123 # 格式化 class demo8: # print() 打印 def __str__(self): return "This is the demo." # repr() 对象字符串表示 def __repr__(self): return "This is a demo." # bytes() 对象字节字符串表现形式 def __bytes__(self): return b"This is one demo." # format() 格式化 def __format__(self, format_spec): return self.__str__() # 属性访问 class demo9: # 获取(不存在)属性 def __getattr__(self): print ("访问的属性不存在") # getattr() hasattr() 获取属性 def __getattribute__(self, attr): print ("访问的属性是%s"%attr) return attr # setattr() 设置属性 def __setattr__(self, attr, value): print ("设置 %s 属性值为 %s"%(attr, value)) # delattr() 删除属性 def __delattr__(self, attr): print ("删除 %s 属性"%attr) # =================================================================== # 描述器(类(test1)的实例出现在属主类(runtest)中,这些方法才会调用)(注:函数调用,这些方法不会被调用) class test1: def __init__(self, value = 1): self.value = value * 2 def __set__(self, instance, value): print("set %s %s %s"%(self, instance, value)) self.value = value * 2 def __get__(self, instance, owner): print("get %s %s %s"%(self, instance, owner)) return self.value def __delete__(self, instance): print("delete %s %s"%(self, instance)) del self.value class test2: def __init__(self, value = 1): self.value = value + 0.3 def __set__(self, instance, value): print("set %s %s %s"%(self, instance, value)) instance.t1 = value + 0.3 def __get__(self, instance, owner): print("get %s %s %s"%(self, instance, owner)) return instance.t1 def __delete__(self, instance): print("delete %s %s"%(self, instance)) del self.value class runtest: t1 = test1() t2 = test2() # --- # 自定义property class property_my: def __init__(self, fget=None, fset=None, fdel=None): self.fget = fget self.fset = fset self.fdel = fdel # 对象被获取(self自身, instance调用该对象的对象(demo9), owner调用该对象的对象类对象(demo9)) def __get__(self, instance, owner): print("get %s %s %s"%(self, instance, owner)) return self.fget(instance) # 对象被设置属性时 def __set__(self, instance, value): print("set %s %s %s"%(self, instance, value)) self.fset(instance, value) # 对象被删除时 def __delete__(self, instance): print("delete %s %s"%(self, instance)) self.fdel(instance) class demo10: def __init__(self): self.num = None def setvalue(self, value): self.num = value def getvalue(self): return self.num def delete(self): del self.num x = property_my(getvalue, setvalue, delete) # =================================================================== # 自定义容器 class lis: def __init__(self, *args): self.lists = args self.size = len(args) self.startindex = 0 self.endindex = self.size # len() 容器元素数量 def __len__(self): return self.size; # lis[1] 获取元素 def __getitem__(self, key = 0): return self.lists[key] # lis[1] = value 设置元素 def __setitem__(self, key, value): pass # del lis[1] 删除元素 def __delitem__(self, key): pass # 返回迭代器 def __iter__(self): return self # rversed() 反向迭代器 def __reversed__(self): while self.endindex > 0: self.endindex -= 1 yield self[self.endindex] # next() 迭代器下个元素 def __next__(self): if self.startindex >= self.size: raise StopIteration # 控制迭代器结束 elem = self.lists[self.startindex] self.startindex += 1 return elem # in / not in def __contains__(self, item): for i in self.lists: if i == item: return True return False # yield 生成器(执行一次返回,下次继续执行后续代码返回) def yielddemo(): num = 0 while 1: # 1 == True; 0 == False if num >= 10: raise StopIteration num += 1 yield num # 能接收数据的生成器 def yielddemo_1(): while 1: num = yield print(num) # with 自动上下文管理 class withdemo: def __init__(self, value): self.value = value # 返回值为 as 之后的值 def __enter__(self): return self.value # 执行完成,退出时的数据清理动作 def __exit__(self, exc_type, exc_value, traceback): del self.value if __name__ == "__main__": # 构造与析构 d1 = demo1() del d1 # new d2 = demo2() # 算术运算符 d3 = demo3(3) d3_1 = demo3(5) print(d3 + d3_1) print(d3 - d3_1) print(d3 * d3_1) print(d3 / d3_1) print(d3 // d3_1) print(d3 % d3_1) print(divmod(d3, d3_1)) print(d3 ** d3_1) print(d3 << d3_1) print(d3 >> d3_1) print(d3 & d3_1) print(d3 ^ d3_1) print(d3 | d3_1) # 反运算符 d4 = none(3) d4_1 = demo4(5) print(d4 + d4_1) print(d4 - d4_1) print(d4 * d4_1) print(d4 / d4_1) print(d4 // d4_1) print(d4 % d4_1) print(divmod(d4, d4_1)) print(d4 ** d4_1) print(d4 << d4_1) print(d4 >> d4_1) print(d4 & d4_1) print(d4 ^ d4_1) print(d4 | d4_1) # 增量赋值运算(测试时注释其他代码) d5 = demo5(3) d5 <<= 5 d5 >>= 5 d5 &= 5 d5 ^= 5 d5 |= 5 d5 += 5 d5 -= 5 d5 *= 5 d5 /= 5 d5 //= 5 d5 %= 5 d5 **= 5 print(d5) # 比较运算符 d6 = demo6(3) d6_1 = demo6(5) print(d6 < d6_1) print(d6 <= d6_1) print(d6 == d6_1) print(d6 != d6_1) print(d6 > d6_1) print(d6 >= d6_1) # 一元操作符(测试时注释其他代码) d7 = demo7(-5) num = +d7 num = -d7 num = abs(d7) num = ~d7 print(num) print(complex(d7)) print(int(d7)) print(float(d7)) print(round(d7)) # 格式化 d8 = demo8() print(d8) print(repr(d8)) print(bytes(d8)) print(format(d8, "")) # 属性访问 d9 = demo9() setattr(d9, "a", 1) # => 设置 a 属性值为 1 print(getattr(d9, "a")) # => a / 访问的属性是a print(hasattr(d9, "a")) # => True / 访问的属性是a delattr(d9, "a") # 删除 a 属性 # --- d9.x = 100 # => 设置 x 属性值为 100 print(d9.x) # => x / 访问的属性是x del d9.x # => 删除 x 属性 # 描述器 r = runtest() r.t1 = 100 # => <__main__.test1> <__main__.runtest> 100 print(r.t1) # => 200 / <__main__.test1> <__main__.runtest> <class '__main__.runtest'> del r.t1 # => <__main__.test1> <__main__.runtest> r.t2 = 200 # => <__main__.test2> <__main__.runtest> 200 / <__main__.test1> <__main__.runtest> 200.3 print(r.t2) # => 400.6 / <__main__.test2> <__main__.runtest> <class '__main__.runtest'> / <__main__.test1> <__main__.runtest> <class '__main__.runtest'> del r.t2 # <__main__.test2> <__main__.runtest> # --- # 自定义property d10 = demo10() d10.x = 100; # => <__main__.property_my> <__main__.demo10> 100 print(d10.x) # => 100 / <__main__.property_my> <__main__.demo10> <class '__main__.demo10'> del d10.x # => <__main__.property_my> <__main__.demo10> d10.num = 200; print(d10.num) # => 200 del d10.num # 自定义容器(迭代器Iterator) lis = lis(1,2,3,4,5,6) print(len(lis)) print(lis[1]) print(next(lis)) print(next(lis)) print(next(lis)) for i in lis: print (i) for i in reversed(lis): print (i) print(3 in lis) print(7 in lis) print(3 not in lis) print(7 not in lis) # yield 生成器(可迭代对象Iterable) for i in yielddemo(): print (i) # --- iters = iter(yielddemo()) print(next(iters)) print(next(iters)) # --- 发送数据给生成器 --- iters = yielddemo_1() next(iters) iters.send(6) # 发送数据并执行 iters.send(10) # with 自动上下文管理 with withdemo("Less is more!") as s: print(s)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇: MySQL令人咋舌的隐式转换