欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

javascript算法之二叉搜索树的示例代码

程序员文章站 2024-01-24 14:18:28
什么是二叉树 二叉树就是树的每个节点最多只能有两个子节点 什么是二叉搜索树 二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插...

什么是二叉树

二叉树就是树的每个节点最多只能有两个子节点

什么是二叉搜索树

二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插入到左节点,否则插入到右节点;若插入过程中,左节点或右节点已经存在,那么继续按如上规则比较,直到遇到一个新的节点。

二叉搜索树的特性

二叉搜索树由于其独特的数据结构,使得其无论在增删,还是查找,时间复杂度都是o(h),h为二叉树的高度。因此二叉树应该尽量的矮,即左右节点尽量平衡。

二叉搜索树的构造

要构造二叉搜索树,首先要构造二叉树的节点类。由二叉树的特点可知,每个节点类都有一个左节点,右节点以及值本身,因此节点类如下:

class node {
 constructor(key) {
  this.key = key;
  this.left = null;
  this.right = null;
 }
}

接着构造二叉搜索树

class tree{
 constructor(param = null) {
  if (param) {
   this.root = new node(param);
  } else {
   this.root = null;
  }
 }
}

这里this.root就是当前对象的树。

二叉搜索树的新增

由二叉搜索树左子树比节点小,右子树别节点大的特点,可以很简单的写出二叉搜索树新增的算法,如下:

insert(key) {
 if (this.root === null) {
  this.root = new node(key);
 } else {
  this._insertnode(this.root, key);
 }
}
_insertnode(node, key) {
 if (key < node.key) {
  if (node.left === null) {
   node.left = new node(key);{1}
  } else {
   this._insertnode(node.left, key);{2}
  }
 } else if (key > node.key) {
  if (node.right === null) {
   node.right = new node(key);{3}
  } else {
   this._insertnode(node.right, key);{4}
  }
 }
}

如上代码先判断新增的key与当前节点的key大小,如果小,就递归遍历左子节点,直到找到一个为null的左子节点;如果比当前节点大同理。如上代码{1}{2}{3}{4}之所以能改变this.root的值,是由于javascript函数是按值传递,而当参数是非基本类型时,例如这里的对象,其对象的值为内存,因此每次都会直接改变this.root的内容。

二叉搜索树的遍历

二叉搜索树分为先序、中序、后序三种遍历方式。

inordertraverse(callback) {
 this._inordertraverse(this.root, callback);
}
_inordertraverse(node, callback) {
 if (node) {
  this._inordertraverse(node.left, callback);
  callback(node.key);
  this._inordertraverse(node.right, callback);
 }
}

如上是中序遍历。

这里需要理解的一点是递归。要知道,函数的执行可以抽象为一种数据结构——栈。针对函数的执行,会维护一个栈,来存储函数的执行。函数在每一次递归时,都会将当前的执行环境入栈并记录执行的位置。以上述代码为例,有如下一个数据

其会从11开始,执行{1}入栈,然后进入7,接着执行{1}入栈,然后到5,执行{1}入栈,再到3,执行{1}入栈,此时发现节点3的左子节点为null,因此开始出栈,此时弹出节点3的执行环境,执行{2},{3},发现3的右侧子节点也为null,{3}的递归执行完毕,接着弹出节点5,执行{2}{3},接着弹出7,执行{2}{3}入栈,执行{3}时,发现节点7有右节点,因此继续执行{1},到节点8,再执行{1},8没有左子节点,{1}执行完毕,执行{2}{3},以此类推。

而前序与中序的不同点在于其先访问节点本身,也就是代码的执行顺序为 2 1 3。

后序同理,执行顺序为1 3 2

不难发现,无论前中后序,永远都是先递归左节点,当左节点遍历完毕时再弹出栈,遍历有节点。他们唯一不同的点在与访问该节点本身的时机。

二叉搜索树的查找

查找很简单,根据左子节点比该节点小,右子节点比该节点大的原则进行循环判断即可。

search(value) {
 if (this.root) {
  if (value === this.root.key) {
   return true;
  } else {
   return this._searchnode(value, this.root);
  }
 }
 throw new error('this.root 不存在');
}
_searchnode(value, node) {
 if (!node) {
  return false;
 }
 if (value === node.key) {
  return true;
 }
 if (value > node.key) {
  return this._searchnode(value, node.right);
 } else if (value < node.key) {
  return this._searchnode(value, node.left);
 }
}

二叉搜索树的删除

删除较为复杂,需要根据不同情况判断

首先判断该节点是否有左子树,如果没有左子节树,则直接将右子树的根节点替换被删除节点;

如果有,则将右子树的最小节点替换被删除节点;

remove(key) {
 this._removenode(this.root, key);
}
_removenode(node, value) {
 if (!node) {
  return null;
 }
 if (value > node.key) {
  node.right = this._removenode(node.right, value);
 } else if (value < node.key) {
  node.left = this._removenode(node.left, value);
 } else {
  // 如果没有左子树,那么将右子树根节点作为替换节点
  if (!node.left) {
   return node.right;
   // 如果存在左子树,那么取右子树最小节点作为替换节点
  } else if (node.left) {
   return this._minnode(node.right);
  }
 }
}

总结

总的来说,通过这次简单的二叉搜索树的学习,让我重新认识了递归,以前对于递归的理解只是一些简单的理论概念,这次深入实践让我对递归的理解又加深了许多。

这让我想到了数学的学习,数学的理论公式是很容易记住掌握的,如果说对一个知识点的掌握满分是十分,那么直到真正去实践它之前,只看公式的掌握只能是2分,因为公式很简单,就几句话几个原则,但是遇到的问题是千变万化的,只有真正将理论付诸实践,经过各种实践的打磨蹂躏,才能真正理解它其中的奥秘。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。