欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

MTCNN算法的理解介绍及代码分析

程序员文章站 2022-03-18 21:31:39
代码地址这里走的是一个github上的代码mtcnn-pytorch运行效果如下是效果图,我们可以看到对一张图片内的每一张人脸进行检测,每个人脸有一个边界框与五个标记点。这里我们使用cv来实现图片显示,以下是TEST.py文件,首先从src目录下的detector文件中导入detect_faces函数,从visualization——utils中导入show_bboxes函数.用Image打开图片,这时图片的输出类型是

代码地址
这里走的是一个github上的代码mtcnn-pytorch

  • 运行效果
    如下是效果图,我们可以看到对一张图片内的每一张人脸进行检测,每个人脸有一个边界框与五个标记点。
    MTCNN算法的理解介绍及代码分析
    这里我们使用cv来实现图片显示,以下是TEST.py文件,
  • 首先从src目录下的detector文件中导入detect_faces函数,从visualization——utils中导入show_bboxes函数.
  • 用Image打开图片,这时图片的输出类型是<class’PIL.JpegImagePlugin.JpegImageFile’>,经过detect_faces的处理得到边界框与关键点。
  • 用cv2打开处理后的图片,这里的输出是<class ‘numpy.ndarray’> 。这里我们复制一份图片。
  • 接着遍历边界框和关键点,这里使关键点为红色,边界框为白色
from src.detector import detect_faces
from src.visualization_utils import show_bboxes
from PIL import Image

import matplotlib.pyplot as plt

import cv2
#
image = Image.open('images/office2.jpg')
bounding_boxes, landmarks = detect_faces(image)
#
image = cv2.imread('images/office2.jpg')

draw = image.copy()
for b in bounding_boxes:
    cv2.rectangle(draw, (int(b[0]), int(b[1])), (int(b[2]), int(b[3])), (255, 255, 255))
#
for p in landmarks:
    for i in range(5):
        cv2.circle(draw, (p[i], p[i + 5]), 1, (0, 0, 255), 2)

cv2.imshow("detection result", draw)
cv2.waitKey(0)

一、上述测试涉及到了一个函数,detect_faces(),它属于detector.py文件。
(1)构建图像金字塔。

  • .其中min_face_size=20.0代表最小人脸, thresholds=[0.6, 0.7, 0.8]代表了三个模型的阀值,他们判断是否是人脸的置信越来越高。
    nms_thresholds=[0.7, 0.7, 0.7])用于作为去重函数nums的参数(后面分析nums函数)
  • 接着加载这三个模型,三个模型会有不同的输出,前两个包括分类输出score(人脸的概率)和回归结果bbox(N*4个坐标值)。最后一个比前面多了landmark位置的回归(5个关键点坐标)。
  • 接着开始构建图像金字塔。获取图片的长和宽,取最小边。看到最小检测尺寸 min_detection_size = 12,缩小因子 factor = 0.707(根号0.5),通过原图像最小的边来不断使其缩小,直至满足最小检测尺寸,并通过scale保存下来其对应缩小因子。
    (2)运行P-Net,对应 run_first_stage(),得到一些框,首先把为空的去除,剩下的不为空的框通过np.vstack()将其由list按照列叠加成一个新的为numpy array,便于后面处理操作。接着用nms(bounding_boxes[:, 0:5], nms_thresholds[0])进行去重操作,并把去重后的框放在边界框列表中。然后使用calibrate_box()通过offset来调整b-box坐标,用convert_to_square()将框调整为正方形,得到的正方形的中心点还是原来矩形的中心点,边长是矩阵宽高的最大值,最后进行一个四舍五入操作。
  • 到了R-Net,先把P-Net的输出放到Variable框架内,经过rnet得到两个输出,分别是预测得到的偏移回归信息,以及置信分类信息。有了置信值,就能根据阈值来判断是不是为人脸,从而进行筛选。接着继续进行去重,调整坐标和形状,进行四舍五入。
  • 接着使STAGE3,这里是O-Net部分,这里还是先把R-Net的输出放到Varible内,经过onet得到三个输出,除了R-Net的两个输出,这里多了一个关键点landmarks = output[0].data.numpy() # shape [n_boxes, 10],接着还是判断是否为人脸,进行一系列操作。
    (3)接着是compute landmark points阶段,即计算关键点位置,因为O-Net得到的关键点是缩放后的关键点位置,所以并不是原本图像的,这里就需要根据width和height去计算原本的关键点位置,最后在进行一次去重操作,得到最终的边界框位置以及关键点位置。
import numpy as np
import torch
from torch.autograd import Variable
from .get_nets import PNet, RNet, ONet
from .box_utils import nms, calibrate_box, get_image_boxes, convert_to_square
from .first_stage import run_first_stage


def detect_faces(image, min_face_size=20.0, # 其中20代表最小的人脸
                 thresholds=[0.6, 0.7, 0.8],#代表了三个模型的阀值,其判断是人脸的置信越来越高
                 nms_thresholds=[0.7, 0.7, 0.7]):
    """
    Arguments:
        image: an instance of PIL.Image.
        min_face_size: a float number.
        thresholds: a list of length 3.
        nms_thresholds: a list of length 3.

    Returns:
        two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
        bounding boxes and facial landmarks.
    """

    # LOAD MODELS
    pnet = PNet()
    rnet = RNet()
    onet = ONet()
    onet.eval()

    # BUILD AN IMAGE PYRAMID
    width, height = image.size#获取图片的长和宽
    min_length = min(height, width)#取最小

    min_detection_size = 12#最小检测尺寸
    factor = 0.707  # sqrt(0.5) 缩小因子

    # scales for scaling the image
    scales = []

    # scales the image so that
    # minimum size that we can detect equals to
    # minimum face size that we want to detect
    m = min_detection_size/min_face_size#
    min_length *= m

    factor_count = 0
    while min_length > min_detection_size:
        scales.append(m*factor**factor_count)
        min_length *= factor
        factor_count += 1

    # STAGE 1

    # it will be returned
    bounding_boxes = []

    # run P-Net on different scales
    for s in scales:
        boxes = run_first_stage(image, pnet, scale=s, threshold=thresholds[0])
        bounding_boxes.append(boxes)

    # collect boxes (and offsets, and scores) from different scales
    bounding_boxes = [i for i in bounding_boxes if i is not None]
    bounding_boxes = np.vstack(bounding_boxes)

    keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
    bounding_boxes = bounding_boxes[keep]

    # use offsets predicted by pnet to transform bounding boxes
    bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
    # shape [n_boxes, 5]

    bounding_boxes = convert_to_square(bounding_boxes)
    bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

    # STAGE 2

    img_boxes = get_image_boxes(bounding_boxes, image, size=24)
    with torch.no_grad():
        img_boxes = Variable(torch.FloatTensor(img_boxes))
    output = rnet(img_boxes)
    offsets = output[0].data.numpy()  # shape [n_boxes, 4] 预测得到的偏移回归信息
    probs = output[1].data.numpy()  # shape [n_boxes, 2] 置信度分类信息

    keep = np.where(probs[:, 1] > thresholds[1])[0]  #置信度是否大于阈值,进一步筛选人脸框
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
    offsets = offsets[keep]

    keep = nms(bounding_boxes, nms_thresholds[1])
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
    bounding_boxes = convert_to_square(bounding_boxes)
    bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

    # STAGE 3

    img_boxes = get_image_boxes(bounding_boxes, image, size=48)
    if len(img_boxes) == 0: 
        return [], []
    with torch.no_grad():
        img_boxes = Variable(torch.FloatTensor(img_boxes))
    output = onet(img_boxes)
    landmarks = output[0].data.numpy()  # shape [n_boxes, 10]
    offsets = output[1].data.numpy()  # shape [n_boxes, 4]
    probs = output[2].data.numpy()  # shape [n_boxes, 2]

    keep = np.where(probs[:, 1] > thresholds[2])[0]
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
    offsets = offsets[keep]
    landmarks = landmarks[keep]

    # compute landmark points
    width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
    height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
    xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
    landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1)*landmarks[:, 0:5]
    landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1)*landmarks[:, 5:10]

    bounding_boxes = calibrate_box(bounding_boxes, offsets)
    keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
    bounding_boxes = bounding_boxes[keep]
    landmarks = landmarks[keep]

    return bounding_boxes, landmarks

二、接下来说detector.py中STAGE1中用到的函数run_first_stage(),它属于first_stage.py文件,这个文件还有一个函数generate_bboxes()。

  • run_first_stage()这个可以看注释,生成边界框,并进行去重操作。其中有四个参数,一个PIL图片,一个神经网络P-Net,图像的宽高规模scale,一个置信度threshold。返回 a float numpy array of shape [n_boxes, 9],bounding boxes with scores and offsets (4 + 1 + 4).
  • _generate_bboxes生成可能是人脸的边界框位置,调整下offset的形式,同时计算得到每个scale对应的bbox坐标值。
import torch
from torch.autograd import Variable
import math
from PIL import Image
import numpy as np
from .box_utils import nms, _preprocess


def run_first_stage(image, net, scale, threshold):
    """Run P-Net, generate bounding boxes, and do NMS.

    Arguments:
        image: an instance of PIL.Image.
        net: an instance of pytorch's nn.Module, P-Net.
        scale: a float number,
            scale width and height of the image by this number.
        threshold: a float number,
            threshold on the probability of a face when generating
            bounding boxes from predictions of the net.

    Returns:
        a float numpy array of shape [n_boxes, 9],
            bounding boxes with scores and offsets (4 + 1 + 4).
    """

    # scale the image and convert it to a float array
    width, height = image.size
    sw, sh = math.ceil(width*scale), math.ceil(height*scale)
    img = image.resize((sw, sh), Image.BILINEAR)
    img = np.asarray(img, 'float32')

    with torch.no_grad():
        img = Variable(torch.FloatTensor(_preprocess(img)))
    output = net(img)
    probs = output[1].data.numpy()[0, 1, :, :]
    offsets = output[0].data.numpy()
    # probs: probability of a face at each sliding window
    # offsets: transformations to true bounding boxes

    boxes = _generate_bboxes(probs, offsets, scale, threshold)
    if len(boxes) == 0:
        return None

    keep = nms(boxes[:, 0:5], overlap_threshold=0.5)
    return boxes[keep]


def _generate_bboxes(probs, offsets, scale, threshold):
    """Generate bounding boxes at places
    where there is probably a face.

    Arguments:
        probs: a float numpy array of shape [n, m].
        offsets: a float numpy array of shape [1, 4, n, m].
        scale: a float number,
            width and height of the image were scaled by this number.
        threshold: a float number.

    Returns:
        a float numpy array of shape [n_boxes, 9]
    """

    # applying P-Net is equivalent, in some sense, to
    # moving 12x12 window with stride 2
    stride = 2
    cell_size = 12

    # indices of boxes where there is probably a face
    inds = np.where(probs > threshold)

    if inds[0].size == 0:
        return np.array([])

    # transformations of bounding boxes
    tx1, ty1, tx2, ty2 = [offsets[0, i, inds[0], inds[1]] for i in range(4)]
    # they are defined as:
    # w = x2 - x1 + 1
    # h = y2 - y1 + 1
    # x1_true = x1 + tx1*w
    # x2_true = x2 + tx2*w
    # y1_true = y1 + ty1*h
    # y2_true = y2 + ty2*h

    offsets = np.array([tx1, ty1, tx2, ty2])
    score = probs[inds[0], inds[1]]

    # P-Net is applied to scaled images
    # so we need to rescale bounding boxes back
    bounding_boxes = np.vstack([
        np.round((stride*inds[1] + 1.0)/scale),
        np.round((stride*inds[0] + 1.0)/scale),
        np.round((stride*inds[1] + 1.0 + cell_size)/scale),
        np.round((stride*inds[0] + 1.0 + cell_size)/scale),
        score, offsets
    ])
    # why one is added?

    return bounding_boxes.T

三、之前一直用到了一个去重函数nms,它属于box_utils.py文件,这个主要有五个函数以及一个_preprocess()对图片进行预处理。

  • 其中nms函数,用来非最大值抑制,也就是通过对这些边界框进行判断,选出极大值进行保留,从而达到去重的操作。

  • convert_to_square函数,是吧边界框转换为方形

  • calibrate_box,通过offset使边界框更可能是最终的目的边界框,返回调整后的bbox。

  • get_image_boxes,从框出的图片像素裁剪到指定大小,便于计算。

  • correct_bboxes,通过检查避免框的尺寸超过图像或者为负值,在之前通过offset整合时,尺寸大小容易过大或过小。它会返回十个参数,前四个中dx,dy多设为0,出现正数,此时x,y为负数了,取了下相反数,edx,edy又进行了调整。而 y, x, ey, ex则为原本的始末坐标,h,w为宽和高。

  • 最后就是图片的预处理了
    Returns:
    dy, dx, edy, edx: a int numpy arrays of shape [n],
    coordinates of the boxes with respect to the cutouts.
    y, x, ey, ex: a int numpy arrays of shape [n],
    corrected ymin, xmin, ymax, xmax.
    h, w: a int numpy arrays of shape [n],
    just heights and widths of boxes.

     in the following order:
         [dy, edy, dx, edx, y, ey, x, ex, w, h].
    
import numpy as np
from PIL import Image


def nms(boxes, overlap_threshold=0.5, mode='union'):
    """Non-maximum suppression.

    Arguments:
        boxes: a float numpy array of shape [n, 5],
            where each row is (xmin, ymin, xmax, ymax, score).
        overlap_threshold: a float number.
        mode: 'union' or 'min'.

    Returns:
        list with indices of the selected boxes
    """

    # if there are no boxes, return the empty list
    if len(boxes) == 0:
        return []

    # list of picked indices
    pick = []

    # grab the coordinates of the bounding boxes
    x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)]

    area = (x2 - x1 + 1.0)*(y2 - y1 + 1.0)
    ids = np.argsort(score)  # in increasing order

    while len(ids) > 0:

        # grab index of the largest value
        last = len(ids) - 1
        i = ids[last]
        pick.append(i)

        # compute intersections
        # of the box with the largest score
        # with the rest of boxes

        # left top corner of intersection boxes
        ix1 = np.maximum(x1[i], x1[ids[:last]])
        iy1 = np.maximum(y1[i], y1[ids[:last]])

        # right bottom corner of intersection boxes
        ix2 = np.minimum(x2[i], x2[ids[:last]])
        iy2 = np.minimum(y2[i], y2[ids[:last]])

        # width and height of intersection boxes
        w = np.maximum(0.0, ix2 - ix1 + 1.0)
        h = np.maximum(0.0, iy2 - iy1 + 1.0)

        # intersections' areas
        inter = w * h
        if mode == 'min':
            overlap = inter/np.minimum(area[i], area[ids[:last]])
        elif mode == 'union':
            # intersection over union (IoU)
            overlap = inter/(area[i] + area[ids[:last]] - inter)

        # delete all boxes where overlap is too big
        ids = np.delete(
            ids,
            np.concatenate([[last], np.where(overlap > overlap_threshold)[0]])
        )

    return pick


def convert_to_square(bboxes):
    """Convert bounding boxes to a square form.

    Arguments:
        bboxes: a float numpy array of shape [n, 5].

    Returns:
        a float numpy array of shape [n, 5],
            squared bounding boxes.
    """

    square_bboxes = np.zeros_like(bboxes)
    x1, y1, x2, y2 = [bboxes[:, i] for i in range(4)]
    h = y2 - y1 + 1.0
    w = x2 - x1 + 1.0
    max_side = np.maximum(h, w)
    square_bboxes[:, 0] = x1 + w*0.5 - max_side*0.5
    square_bboxes[:, 1] = y1 + h*0.5 - max_side*0.5
    square_bboxes[:, 2] = square_bboxes[:, 0] + max_side - 1.0
    square_bboxes[:, 3] = square_bboxes[:, 1] + max_side - 1.0
    return square_bboxes


def calibrate_box(bboxes, offsets):
    """Transform bounding boxes to be more like true bounding boxes.
    'offsets' is one of the outputs of the nets.

    Arguments:
        bboxes: a float numpy array of shape [n, 5].
        offsets: a float numpy array of shape [n, 4].

    Returns:
        a float numpy array of shape [n, 5].
    """
    x1, y1, x2, y2 = [bboxes[:, i] for i in range(4)]
    w = x2 - x1 + 1.0
    h = y2 - y1 + 1.0
    w = np.expand_dims(w, 1)
    h = np.expand_dims(h, 1)

    # this is what happening here:
    # tx1, ty1, tx2, ty2 = [offsets[:, i] for i in range(4)]
    # x1_true = x1 + tx1*w
    # y1_true = y1 + ty1*h
    # x2_true = x2 + tx2*w
    # y2_true = y2 + ty2*h
    # below is just more compact form of this

    # are offsets always such that
    # x1 < x2 and y1 < y2 ?

    translation = np.hstack([w, h, w, h])*offsets
    bboxes[:, 0:4] = bboxes[:, 0:4] + translation
    return bboxes


def get_image_boxes(bounding_boxes, img, size=24):
    """Cut out boxes from the image.

    Arguments:
        bounding_boxes: a float numpy array of shape [n, 5].
        img: an instance of PIL.Image.
        size: an integer, size of cutouts.

    Returns:
        a float numpy array of shape [n, 3, size, size].
    """

    num_boxes = len(bounding_boxes)
    width, height = img.size

    [dy, edy, dx, edx, y, ey, x, ex, w, h] = correct_bboxes(bounding_boxes, width, height)
    img_boxes = np.zeros((num_boxes, 3, size, size), 'float32')

    for i in range(num_boxes):
        img_box = np.zeros((h[i], w[i], 3), 'uint8')

        img_array = np.asarray(img, 'uint8')
        img_box[dy[i]:(edy[i] + 1), dx[i]:(edx[i] + 1), :] =\
            img_array[y[i]:(ey[i] + 1), x[i]:(ex[i] + 1), :]

        # resize
        img_box = Image.fromarray(img_box)
        img_box = img_box.resize((size, size), Image.BILINEAR)
        img_box = np.asarray(img_box, 'float32')

        img_boxes[i, :, :, :] = _preprocess(img_box)

    return img_boxes


def correct_bboxes(bboxes, width, height):
    """Crop boxes that are too big and get coordinates
    with respect to cutouts.

    Arguments:
        bboxes: a float numpy array of shape [n, 5],
            where each row is (xmin, ymin, xmax, ymax, score).
        width: a float number.
        height: a float number.

    Returns:
        dy, dx, edy, edx: a int numpy arrays of shape [n],
            coordinates of the boxes with respect to the cutouts.
        y, x, ey, ex: a int numpy arrays of shape [n],
            corrected ymin, xmin, ymax, xmax.
        h, w: a int numpy arrays of shape [n],
            just heights and widths of boxes.

        in the following order:
            [dy, edy, dx, edx, y, ey, x, ex, w, h].
    """

    x1, y1, x2, y2 = [bboxes[:, i] for i in range(4)]
    w, h = x2 - x1 + 1.0,  y2 - y1 + 1.0
    num_boxes = bboxes.shape[0]

    # 'e' stands for end
    # (x, y) -> (ex, ey)
    x, y, ex, ey = x1, y1, x2, y2

    # we need to cut out a box from the image.
    # (x, y, ex, ey) are corrected coordinates of the box
    # in the image.
    # (dx, dy, edx, edy) are coordinates of the box in the cutout
    # from the image.
    dx, dy = np.zeros((num_boxes,)), np.zeros((num_boxes,))
    edx, edy = w.copy() - 1.0, h.copy() - 1.0

    # if box's bottom right corner is too far right
    ind = np.where(ex > width - 1.0)[0]
    edx[ind] = w[ind] + width - 2.0 - ex[ind]
    ex[ind] = width - 1.0

    # if box's bottom right corner is too low
    ind = np.where(ey > height - 1.0)[0]
    edy[ind] = h[ind] + height - 2.0 - ey[ind]
    ey[ind] = height - 1.0

    # if box's top left corner is too far left
    ind = np.where(x < 0.0)[0]
    dx[ind] = 0.0 - x[ind]
    x[ind] = 0.0

    # if box's top left corner is too high
    ind = np.where(y < 0.0)[0]
    dy[ind] = 0.0 - y[ind]
    y[ind] = 0.0

    return_list = [dy, edy, dx, edx, y, ey, x, ex, w, h]
    return_list = [i.astype('int32') for i in return_list]

    return return_list


def _preprocess(img):
    """Preprocessing step before feeding the network.

    Arguments:
        img: a float numpy array of shape [h, w, c].

    Returns:
        a float numpy array of shape [1, c, h, w].
    """
    img = img.transpose((2, 0, 1))
    img = np.expand_dims(img, 0)
    img = (img - 127.5)*0.0078125
    return img

四、存放网络模型的文件get_nets.py,里面有供我们使用的P,R,O三种网络模型。其原理与mtcnn论文一致。
MTCNN算法的理解介绍及代码分析

import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import numpy as np


class Flatten(nn.Module):

    def __init__(self):
        super(Flatten, self).__init__()

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, c, h, w].
        Returns:
            a float tensor with shape [batch_size, c*h*w].
        """

        # without this pretrained model isn't working
        x = x.transpose(3, 2).contiguous()

        return x.view(x.size(0), -1)


class PNet(nn.Module):

    def __init__(self):

        super(PNet, self).__init__()

        # suppose we have input with size HxW, then
        # after first layer: H - 2,
        # after pool: ceil((H - 2)/2),
        # after second conv: ceil((H - 2)/2) - 2,
        # after last conv: ceil((H - 2)/2) - 4,
        # and the same for W

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 10, 3, 1)),
            ('prelu1', nn.PReLU(10)),
            ('pool1', nn.MaxPool2d(2, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(10, 16, 3, 1)),
            ('prelu2', nn.PReLU(16)),

            ('conv3', nn.Conv2d(16, 32, 3, 1)),
            ('prelu3', nn.PReLU(32))
        ]))

        self.conv4_1 = nn.Conv2d(32, 2, 1, 1)
        self.conv4_2 = nn.Conv2d(32, 4, 1, 1)

        weights = np.load('src/weights/pnet.npy')[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, 3, h, w].
        Returns:
            b: a float tensor with shape [batch_size, 4, h', w'].
            a: a float tensor with shape [batch_size, 2, h', w'].
        """
        x = self.features(x)
        a = self.conv4_1(x)
        b = self.conv4_2(x)
        a = F.softmax(a,dim=1)
        return b, a


class RNet(nn.Module):

    def __init__(self):

        super(RNet, self).__init__()

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 28, 3, 1)),
            ('prelu1', nn.PReLU(28)),
            ('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(28, 48, 3, 1)),
            ('prelu2', nn.PReLU(48)),
            ('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv3', nn.Conv2d(48, 64, 2, 1)),
            ('prelu3', nn.PReLU(64)),

            ('flatten', Flatten()),
            ('conv4', nn.Linear(576, 128)),
            ('prelu4', nn.PReLU(128))
        ]))

        self.conv5_1 = nn.Linear(128, 2)
        self.conv5_2 = nn.Linear(128, 4)

        weights = np.load('src/weights/rnet.npy')[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, 3, h, w].
        Returns:
            b: a float tensor with shape [batch_size, 4].
            a: a float tensor with shape [batch_size, 2].
        """
        x = self.features(x)
        a = self.conv5_1(x)
        b = self.conv5_2(x)
        a = F.softmax(a,dim=1)
        return b, a


class ONet(nn.Module):

    def __init__(self):

        super(ONet, self).__init__()

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 32, 3, 1)),
            ('prelu1', nn.PReLU(32)),
            ('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(32, 64, 3, 1)),
            ('prelu2', nn.PReLU(64)),
            ('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv3', nn.Conv2d(64, 64, 3, 1)),
            ('prelu3', nn.PReLU(64)),
            ('pool3', nn.MaxPool2d(2, 2, ceil_mode=True)),

            ('conv4', nn.Conv2d(64, 128, 2, 1)),
            ('prelu4', nn.PReLU(128)),

            ('flatten', Flatten()),
            ('conv5', nn.Linear(1152, 256)),
            ('drop5', nn.Dropout(0.25)),
            ('prelu5', nn.PReLU(256)),
        ]))

        self.conv6_1 = nn.Linear(256, 2)
        self.conv6_2 = nn.Linear(256, 4)
        self.conv6_3 = nn.Linear(256, 10)

        weights = np.load('src/weights/onet.npy')[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, 3, h, w].
        Returns:
            c: a float tensor with shape [batch_size, 10].
            b: a float tensor with shape [batch_size, 4].
            a: a float tensor with shape [batch_size, 2].
        """
        x = self.features(x)
        a = self.conv6_1(x)
        b = self.conv6_2(x)
        c = self.conv6_3(x)
        a = F.softmax(a,dim=1)
        return c, b, a

源于百度:
另外,这里还用到了一种激活函数PRelu,是一种带参数的Relu激活函数,其中如果ai=0,那么就是Relu激活函数。如果参数ai很小,则会退化为LRelu。有实验证明,与ReLU相比,LReLU对最终的结果几乎没什么影响。(我觉得这像是一个极限微分问题…)
MTCNN算法的理解介绍及代码分析
五、这个项目中还有一个文件visualzation.py是用来显示结果的,因为这里使用了cv2,并且这个文件不涉及算法内容,不做分析。

本文地址:https://blog.csdn.net/LanceHang/article/details/110952809

相关标签: 深度学习