mysql千万级数据怎么做优化
function insert(){ global $m; if (!isset($_REQUEST['strs']) || !isset($_REQUEST['type']) || !isset($_REQUEST['hash'])){ echo 'param error'; return; } //strs为所有字符串 $poststr = $_REQUEST['strs']; $xstrs = json_decode(stripslashes($poststr), true); $type = $_REQUEST['type']; $hash = $_REQUEST['hash']; if (count($xstrs) 256){ $strtmp = substr($strtmp, 0, 256); } if (strlen($strtmp) >= 7) { array_push($strs, $strtmp); } } //拼接所有字符串 $tmp = '("'.implode('","', $strs).'")'; //获取已存在的字符串 $sql = "select * from $table where str in $tmp"; $ret = mysql_query($sql, $m); if (!$ret){ $msg = 'exec error:'.mysql_error($m).','.$sql; DsLog::errLog($msg); echo $msg; return; } $exists = array(); $notexists = array(); $count = mysql_num_rows($ret); for ($i = 0; $i 0){ //更新已存在字符串的count字段 $tmp = '("'.implode('","', $exists).'")'; $time = date('YmdHi'); $sql = "update $table set count=count+1 where str in $tmp"; $ret = mysql_query($sql, $m); if (!$ret){ $msg = 'exec error:'.mysql_error($m).','.$sql; DsLog::errLog($msg); echo $msg; return; } //更新已存在字符串的upd字段 $sql = "update $table set upd='$time' where str in $tmp"; $ret = mysql_query($sql, $m); if (!$ret){ $msg = 'exec error:'.mysql_error($m).','.$sql; DsLog::errLog($msg); echo $msg; return; } } //插入新信息 if (count($notexists) > 0){ $time = date('YmdHi'); $sql = "insert ignore into $table (str,hash,count, upd) values"; for ($i = 0; $i
我现在要对字符串做统计,统计每个字符串的数量,就是类似一个map, 这符串:数量,当然,数据库顺便还保存了一下字符中的crc等信息
insert函数接收post过来的strs,这是一个字符串数组,每次post过来的字符串数量平均为1500
现在数据库里的记录1200W条,每一次insert花费的时间平均为20秒(经常出现30秒超时)
请问下各位,该怎么做优化,现在只是统计了很小一部分,预计统计完数据量大概在1-10亿条
回复讨论(解决方案)
对了,str字段做了唯一索引,其它字段没做,mysql为MyISAM
你能确定瓶颈是在数据库做 查询 和 修改 的3条语句上吗?
你说 每次post过来的字符串数量平均为1500
那是指 1500 的单词吗?就算不是(是串长度)那么以平均每个单词20个字符计算,也有75个单词
你的过滤条件是 str in $tmp (str in ('xxx','xxx'....))也就是对表中的每一条记录都要做 1500(75)次字符串比较,而命中率至多是1/1500(1/75)你认为这样做合适吗?
数据库的强项在于记录间的比较,而你却在做弱势的列间比较
你可以用传入的数据构造出一个临时表(每行一个单词),再去与主表关联操作。这样才能发挥数据库的优势
再有,你的连续 2 条 update 语句不能合并在一起吗?
你能确定瓶颈是在数据库做 查询 和 修改 的3条语句上吗?
你说 每次post过来的字符串数量平均为1500
那是指 1500 的单词吗?就算不是(是串长度)那么以平均每个单词20个字符计算,也有75个单词
你的过滤条件是 str in $tmp (str in ('xxx','xxx'....))也就是对表中的每一条记录都要做 1500(75)次字符串比较,而命中率至多是1/1500(1/75)你认为这样做合适吗?
数据库的强项在于记录间的比较,而你却在做弱势的列间比较
你可以用传入的数据构造出一个临时表(每行一个单词),再去与主表关联操作。这样才能发挥数据库的优势
再有,你的连续 2 条 update 语句不能合并在一起吗?
1500是指字符数,字符数应该在5W左右
你的意思是先把1500条记录insert到一个临时表tmp_table,然后
然后 select* from table inner join tmp_talbe on table.str = tmp_table.str 这样么?你能确定瓶颈是在数据库做 查询 和 修改 的3条语句上吗?
你说 每次post过来的字符串数量平均为1500
那是指 1500 的单词吗?就算不是(是串长度)那么以平均每个单词20个字符计算,也有75个单词
你的过滤条件是 str in $tmp (str in ('xxx','xxx'....))也就是对表中的每一条记录都要做 1500(75)次字符串比较,而命中率至多是1/1500(1/75)你认为这样做合适吗?
数据库的强项在于记录间的比较,而你却在做弱势的列间比较
你可以用传入的数据构造出一个临时表(每行一个单词),再去与主表关联操作。这样才能发挥数据库的优势
再有,你的连续 2 条 update 语句不能合并在一起吗?
1500是字符串数,大概3W个字符
你的意思是把1500个字符中插入到临时表tmp里,然后再 select* from white inner join tmp on white.str=tmp.str 么?
我刚测了下
select* from white inner join tmp on white.str=tmp.str 执行时间10Sid select_type table type possible_keys key key_len ref rows Extra1 SIMPLE tmp index str str 770 NULL 2531 Using index1 SIMPLE white eq_ref str str 770 bayes.tmp.str 1
直接执行 select * from white where str in(''xxx','xxx'...) 执行时间9Sid select_type table type possible_keys key key_len ref rows Extra1 SIMPLE white range str str 770 NULL 2531 Using where
感觉效果差不多一样1、mysql 有内存表,你并未使用
2、将两条 update 合并,应该能减少 10 秒mysql_error这种库函数的效率也不高吧而且官方也不推荐,我几乎没有用过这种,我学PHP的时候,直接开始PDO的。
还有,你用了in这个关键字,好像它是不走索引的吧。
感觉效果差不多一样
应该是你测试环境的问题吧,联表查询大多数情况下是要比in快的
你测的结果差不多可能是如下原因
1.查询表的数据没有达到一定量
2.两种查询方式查出的结果集不同
3.查询字段未加索引或加的不对
4.被其他索引过多而影响
5.其他原因
我认为比较明显的就是第2个原因
你联表查时没有指定查询字段,联表出的字段肯定要比不连表的要多
还有联表查询会有一对多的情况,那样一条记录就会变成多条的,要加group by