第二章:第三节数据重构
程序员文章站
2024-01-20 12:01:04
...
2 第二章:数据重构
第一部分:数据聚合与运算
2.6 数据运用
2.6.1 任务一:通过教材《Python for Data Analysis》P303、Google or anything来学习了解GroupBy机制
#写入心得
2.4.2:任务二:计算泰坦尼克号男性与女性的平均票价
# 写入代码
text.groupby('Sex')['Fare'].mean()
Sex
female 44.479818
male 25.523893
Name: Fare, dtype: float64
在了解GroupBy机制之后,运用这个机制完成一系列的操作,来达到我们的目的。
下面通过几个任务来熟悉GroupBy机制。
2.4.3:任务三:统计泰坦尼克号中男女的存活人数
# 写入代码
text.groupby('Sex')['Survived'].sum()
Sex
female 233
male 109
Name: Survived, dtype: int64
text.groupby('Sex')['Survived'].count()
Sex
female 314
male 577
Name: Survived, dtype: int64
text.groupby('Sex')['Survived'].sum()/text.groupby('Sex')['Survived'].count()
Sex
female 0.742038
male 0.188908
Name: Survived, dtype: float64
2.4.4:任务四:计算客舱不同等级的存活人数
# 写入代码
text.groupby('Pclass')['Survived'].sum()
Pclass
1 136
2 87
3 119
Name: Survived, dtype: int64
text.groupby('Pclass')['Survived'].count()
Pclass
1 216
2 184
3 491
Name: Survived, dtype: int64
text.groupby('Pclass')['Survived'].sum()/text.groupby('Pclass')['Survived'].count()
Pclass
1 0.629630
2 0.472826
3 0.242363
Name: Survived, dtype: float64
统计不同等级客舱中男女比例
text.groupby(['Pclass','Sex']).head(1)
Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S |
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S |
6 | 6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0.0 | 0.0 | 17463 | 51.8625 | E46 | S |
9 | 9 | 10 | 1 | 2 | Nasser, Mrs. Nicholas (Adele Achem) | female | 14.0 | 1.0 | 0.0 | 237736 | 30.0708 | NaN | C |
17 | 17 | 18 | 1 | 2 | Williams, Mr. Charles Eugene | male | NaN | 0.0 | 0.0 | 244373 | 13.0000 | NaN | S |
text.groupby(['Pclass','Sex'])['PassengerId'].count()/[94+76+144,122+108+347,94+76+144,122+108+347,94+76+144,122+108+347]#['Sex']=='male'
Pclass Sex
1 female 0.299363
male 0.211438
2 female 0.242038
male 0.187175
3 female 0.458599
male 0.601386
Name: PassengerId, dtype: float64
【提示:】表中的存活那一栏,可以发现如果还活着记为1,死亡记为0
【思考】从数据分析的角度,上面的统计结果可以得出那些结论
#思考心得
女性更倾向与买贵一些的票,同时女性的存活率显著的比男性高,对比不同仓位中男女所占的比例也可以看出,相比男性在女性的群体中
更倾向于住好一些的客舱,这可能也就是存活率高的原因。
【思考】从任务二到任务四中,这些运算可以通过agg()函数来同时计算。并且可以使用rename函数修改列名。你可以按照提示写出这个过程吗?
#思考心得
text.groupby('Sex').agg({'Fare':[('rename_mean','mean')],'Survived':[('rename_sum','sum')]})
Fare | Survived | |
---|---|---|
rename_mean | rename_sum | |
Sex | ||
female | 44.479818 | 233 |
male | 25.523893 | 109 |
text.groupby('Pclass').agg({'Survived':['sum']}).rename(columns={'sum':'rename_sum'})
Survived | |
---|---|
rename_sum | |
Pclass | |
1 | 136 |
2 | 87 |
3 | 119 |
2.4.5:任务五:统计在不同等级的票中的不同年龄的船票花费的平均值
# 写入代码
text.groupby(['Pclass','Age'])['Fare'].mean()
# text['P_A_Fare_mean']=text.groupby(['Pclass','Age'])['Fare'].mean()
Pclass Age
1 0.92 151.5500
2.00 151.5500
4.00 81.8583
11.00 120.0000
14.00 120.0000
...
3 61.00 6.2375
63.00 9.5875
65.00 7.7500
70.50 7.7500
74.00 7.7750
Name: Fare, Length: 182, dtype: float64
text['P_A_Fare_mean']=text['Fare']
for name ,group in text.groupby(['Pclass','Age']):
text.loc[group.index,'P_A_Fare_mean']= pd.Series(group['Fare'].mean(),index=group.index,name='P_A_Fare_mean')
# display(text.loc[group.index]['P_A_Fare_mean'])
text.head()
Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | P_A_Fare_mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S | 7.988330 |
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C | 103.711800 |
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S | 14.158036 |
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S | 165.744911 |
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | NaN | S | 9.736800 |
2.4.6:任务六:将任务二和任务三的数据合并,并保存到sex_fare_survived.csv
# 写入代码
text.groupby('Sex').agg({'Fare':[('rename_mean','mean')],'Survived':[('rename_sum','sum')]})
Fare | Survived | |
---|---|---|
rename_mean | rename_sum | |
Sex | ||
female | 44.479818 | 233 |
male | 25.523893 | 109 |
mean=text.groupby('Sex')['Fare'].mean()
sur=text.groupby('Sex')['Survived'].sum()
display(mean)
display(sur)
display(pd.merge(mean,sur,on='Sex'))
display(mean.to_frame().join(sur))
display(pd.concat([mean.to_frame(),sur.to_frame()],axis=1))
Sex
female 44.479818
male 25.523893
Name: Fare, dtype: float64
Sex
female 233
male 109
Name: Survived, dtype: int64
Fare | Survived | |
---|---|---|
Sex | ||
female | 44.479818 | 233 |
male | 25.523893 | 109 |
Fare | Survived | |
---|---|---|
Sex | ||
female | 44.479818 | 233 |
male | 25.523893 | 109 |
Fare | Survived | |
---|---|---|
Sex | ||
female | 44.479818 | 233 |
male | 25.523893 | 109 |
result =pd.merge(mean,sur,on='Sex')
result.to_csv('sex_fare_survived.csv')
2.4.7:任务七:得出不同年龄的总的存活人数,然后找出存活人数的最高的年龄,最后计算存活人数最高的存活率(存活人数/总人数)
# 写入代码
text.groupby('Age')['Survived'].sum()#.max()
Age
0.42 1
0.67 1
0.75 2
0.83 2
0.92 1
..
70.00 0
70.50 0
71.00 0
74.00 0
80.00 1
Name: Survived, Length: 88, dtype: int64
# 写入代码
#存活人数的最高的年龄
text.groupby('Age')['Survived'].sum().idxmax()
24.0
# 写入代码
# 存活人数的最高的年龄的存活人数
text.groupby('Age')['Survived'].sum().loc[24.0]
15
# 写入代码
#最后计算存活人数最高的存活率(存活人数/总人数)
text.groupby('Age')['Survived'].sum().loc[24.0]/text.groupby('Age')['Survived'].count().loc[24.0]
0.5
上一篇: php中定时计划任务的实现原理
下一篇: CentOS6环境部署OWNCLOUD5