欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python实现mapreduce模式的例子

程序员文章站 2024-01-18 10:17:46
...
MapReduce是一种从函数式编程语言借鉴过来的模式,在某些场景下,它可以极大地简化代码。先看一下什么是MapReduce:

MapReduce是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(归纳)”,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。
当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归纳)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
简单来说,MapReduce就是把待处理的问题分解为Map和Reduce两个部分。而待处理的数据作为一个序列,每一个序列里的数据通过Map的函数进行运算,再通过Reduce的函数进行聚合成最终的结果。

下面使用mapreduce模式实现了一个简单的统计日志中单词出现次数的程序:

from functools import reduce
from multiprocessing import Pool
from collections import Counter

def read_inputs(file):
    for line in file:
        line = line.strip()
        yield line.split()

def count(file_name):
    file = open(file_name)
    lines = read_inputs(file)
    c = Counter()
    for words in lines:
        for word in words:
            c[word] += 1
    return c

def do_task():
    job_list = ['log.txt'] * 10000
    pool = Pool(8)
    return reduce(lambda x, y: x+y, pool.map(count, job_list))

if __name__ == "__main__":
    rv = do_task()
相关标签: python mapreduce