Spark 加载数据库mysql表中数据进行分析
程序员文章站
2024-01-17 13:51:58
1.工程maven依赖包 2.spark加载数据库中数据 3.spark支持加载多种数据库,仅需要用户依赖不同的数据库驱动包,并且代码进行微调即可 根据以上java代码,仅需调整18行,更改驱动加载类即可。 ......
1.工程maven依赖包
1 2 <properties> 3 <spark_version>2.3.1</spark_version> 4 <!-- elasticsearch--> 5 <elasticsearch.version>5.5.2</elasticsearch.version> 6 <fastjson.version>1.2.28</fastjson.version> 7 <elasticsearch-hadoop.version>6.3.2</elasticsearch-hadoop.version> 8 <elasticsearch-spark.version>5.5.2</elasticsearch-spark.version> 9 </properties> 10 <dependencies> 11 <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> 12 <dependency> 13 <groupId>org.apache.spark</groupId> 14 <artifactId>spark-core_2.11</artifactId> 15 <version>${spark_version}</version> 16 </dependency> 17 <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql --> 18 <dependency> 19 <groupId>org.apache.spark</groupId> 20 <artifactId>spark-sql_2.11</artifactId> 21 <version>${spark_version}</version> 22 </dependency> 23 <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-yarn --> 24 <dependency> 25 <groupId>org.apache.spark</groupId> 26 <artifactId>spark-yarn_2.11</artifactId> 27 <version>${spark_version}</version> 28 </dependency> 29 <dependency> 30 <groupId>org.elasticsearch</groupId> 31 <artifactId>elasticsearch-spark-20_2.11</artifactId> 32 <version>${elasticsearch-spark.version}</version> 33 </dependency> 34 <dependency> 35 <groupId>mysql</groupId> 36 <artifactId>mysql-connector-java</artifactId> 37 <version>5.1.46</version> 38 </dependency> 39 </dependencies>
2.spark加载数据库中数据
1 public class GoodsFromMySQL { 2 3 /** 4 * 加载数据库数据 5 * 6 * @param sc spark context 7 * @param sparkSession spark session 8 */ 9 public static void loadGoodsInfo(SparkContext sc, SparkSession sparkSession) { 10 String url = "jdbc:mysql://x.x.x.x:3306/db-test"; 11 12 String sql = "(SELECT item_name as itemName, goods_category as goodsCategory FROM goods where dict_type='100203' and item_name " + 13 "is not null) as my-goods"; 14 15 SQLContext sqlContext = SQLContext.getOrCreate(sc); 16 DataFrameReader reader = sqlContext.read().format("jdbc"). 17 option("url", url).option("dbtable", sql). 18 option("driver", "com.mysql.jdbc.Driver"). 19 option("user", "root"). 20 option("password", "xxxxx"); 21 22 23 Dataset<Row> goodsDataSet = reader.load(); 24 25 // Looks the schema of this DataFrame. 26 goodsDataSet.printSchema(); 27 28 goodsDataSet.write().mode(SaveMode.Overwrite).json("/data/app/source_new.json"); 29 } 30 31 32 public static void main(String[] args) { 33 SparkConf conf = new SparkConf().setAppName("my-app"); 34 SparkContext sc = new SparkContext(conf); 35 36 SparkSession sparkSession = new SparkSession(sc); 37 38 loadGoodsInfo(sc, sparkSession); 39 } 40 }
3.spark支持加载多种数据库,仅需要用户依赖不同的数据库驱动包,并且代码进行微调即可
根据以上java代码,仅需调整18行,更改驱动加载类即可。