欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

棋盘覆盖

程序员文章站 2024-01-16 22:59:40
...

棋盘覆盖问题

问题描述

棋盘覆盖问题。有一个2k∗2k的方格棋盘,恰有一个方格是黑色的,其他为白色。你的任务是用包含3个方格的L型牌覆盖所有白色方格。黑色方格不能被覆盖,且任意一个白色方格不能同时被两个或更多牌覆盖。如图所示为L型牌的4种旋转方式。

棋盘覆盖

输入输出

输入:给定k(1<=k<=10),表示棋盘大小为 2^k×2^k ,在给出特殊方格坐标x,y(0<=x,y<=1024)。

输出,一个边长为2^k的方阵,特殊方格编号0,所有骨牌从1开始编号,数据间间隔TAB。

样例输入:2 0 1

样例输出:

2 0 3 3

2 2 1 3

4 1 1 5

4 4 5 5

代码

#include<iostream>  
#include<vector>  
#include<stack>  

using namespace std;  

vector<vector<int> > board(4);//棋盘数组,也可以作为参数传递进chessBoard中去,作为全局变量可以减少参数传递  
stack<int> stI;   //记录当前所使用的骨牌号码,使用栈顶元素填充棋盘数组  
int sL = 0;     //L型骨牌序号  

//所有下标皆为0开始的C C++下标  
void chessBoard(int uRow, int lCol, int specPosR, int specPosC, int rowSize)  
{  
    if(rowSize ==1) return;  
    //static int sL = 0;棋牌和骨牌都可以用static代替,如果不喜欢用全局变量的话。  
    sL++;     
    stI.push(sL); //每递归深入一层,就把一个骨牌序号入栈  
    int halfSize = rowSize/2;//拆分  

    //注意:下面四个if else,肯定是只有一个if成立,然后执行if句,而肯定有三个else语句要执行的,因为肯定有一个是特殊位置,而其他三个是空白位置,需要填充骨牌。  

    //1如果特殊位置在左上角区域,则继续递归,直到剩下一个格子,并且该格子已经填充,遇到函数头一句if(rowSize == 1) return;就跳出一层递归。  
    //注意是一个区域或子棋盘,有一个或者多个格子,并不是就指一个格子。  
    if(specPosR<uRow+halfSize && specPosC<lCol+halfSize)  
        chessBoard(uRow, lCol, specPosR, specPosC, halfSize);  
    //如果其他情况  
    else  
    {  
        board[uRow+halfSize-1][lCol+halfSize-1] = stI.top();  
        //因为特殊位置不在,所以可以选择任意一个空格填充,但是本算法只填充左上角(也许不止一个格,也许有很多个格子)区域的右下角。大家仔细查一下,就知道下标[uRow+halfSize-1][lCol+halfSize-1]是本区域中最右下角的一个格子的下标号。  
        chessBoard(uRow, lCol, uRow+halfSize-1, lCol+halfSize-1, halfSize);  
        //然后是递归填充这个区域的其他空白格子。因为上一句已经填充了[uRow+halfSize-1][lCol+halfSize-1]这个格子,所以,这个下标作为特殊位置参数传递进chessBoard中。  
    }     

    //2右上角区域,解析类上  
    if(specPosR<uRow+halfSize && specPosC>=lCol+halfSize)  
        chessBoard(uRow, lCol+halfSize, specPosR, specPosC, halfSize);  
    else  
    {  
        board[uRow+halfSize-1][lCol+halfSize] = stI.top();  
        chessBoard(uRow, lCol+halfSize, uRow+halfSize-1, lCol+halfSize, halfSize);  
    }         

    //3左下角区域,类上  
    if(specPosR>=uRow+halfSize && specPosC<lCol+halfSize)  
        chessBoard(uRow+halfSize, lCol, specPosR, specPosC, halfSize);  
    else  
    {  
        board[uRow+halfSize][lCol+halfSize-1] = stI.top();  
        chessBoard(uRow+halfSize, lCol, uRow+halfSize, lCol+halfSize-1, halfSize);  
    }     

    //4右下角区域,类上  
    if(specPosR>=uRow+halfSize && specPosC>=lCol+halfSize)  
        chessBoard(uRow+halfSize, lCol+halfSize, specPosR, specPosC, halfSize);  
    else  
    {  
        board[uRow+halfSize][lCol+halfSize] = stI.top();  
        chessBoard(uRow+halfSize, lCol+halfSize, uRow+halfSize, lCol+halfSize, halfSize);  
    }     

    stI.pop();//本次骨牌号填充了三个格,填充完就出栈  
}  

void test()  
{  
    //初始化数组  
    for(int i=0; i<4; i++)  
    {  
        board[i].resize(4);  
    }  

    chessBoard(0, 0, 3, 3, 4);  

    //特殊位置填充0  
    board[3][3] = 0;  

    //序列输出  
    for(int j=0; j<4; j++)  
    {  
        for(int i=0; i<4; i++)  
            cout<<board[j][i]<<"\t";  
        cout<<endl;  
    }  
    cout<<endl;  
}  


int main()  
{  
    test();  
    return 0;  
}  
相关标签: 算法 棋盘覆盖