欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Precision/Recall和ROC曲线

程序员文章站 2024-01-16 08:17:58
...

转载自:http://www.zhizhihu.com/html/y2010/2137.html

                           http://blog.csdn.net/adminabcd/article/details/46475361

Precision/Recall和ROC曲线

   1、Precision/Recall的基本概念

查准率和查全率是信息检索效率评价的两个定量指标,不仅可以用来评价每次检索的准确性和全面性,也是在信息检索系统评价中衡量系统检索性能的重要方面。

(1)查准率(Precision ratio,简称为P),是指检出的相关文献数占检出文献总数的百分比。查准率反映检索准确性,其补数就是误检率。

查准率=(检索出的相关信息量/检索出的信息总量)*100%

(2)查全率(Recall ratio,简称为R),是指检出的相关文献数占系统中相关文献总数的百分比。查全率反映检索全面性,其补数就是漏检率。

查全率=(检索出的相关信息量/系统中的相关信息总量)*100%

【Precision/Recall曲线的来源】

要评价信息检索系统的性能水平,就必须在一个检索系统中进行多次检索。每进行一次检索,都计算其查准率和查全率,并以此作为坐标值,在平面坐标图上标示出来。通过大量的检索,就可以得到检索系统的性能曲线。 
Precision/Recall曲线一般是以每一次计算的查全率为横坐标,每一次计算的查准率为纵坐标。如下图所示: 
Precision/Recall和ROC曲线 
该图是由100次检索得到的,由图可知:在查全率和查准率之间存在着相反的相互依赖关系–如果提高输出的查全率,就会降低其查准率

【ROC曲线】

ROC曲线的横坐标为false positive rate,纵坐标为true positive rate。 
其中

false positive rate=搜索出的不相关信息量/系统中的不相关信息量

true positive rate=搜索到的相关信息量/系统中的相关信息量

如下图所示: 
Precision/Recall和ROC曲线 
该曲线也是由100次检索得到的,由图可知,false positive rate与true positive rate之间是正相关的。

【Precision/Recall和ROC曲线的一个小实例】

功能函数代码:

function [prec, tpr, fpr, thresh] = prec_rec(score, target, varargin)
% PREC_REC - Compute and plot precision/recall and ROC curves.
%
%   PREC_REC(SCORE,TARGET), where SCORE and TARGET are equal-sized vectors,
%   and TARGET is binary, plots the corresponding precision-recall graph
%   and the ROC curve.
%
%   Several options of the form PREC_REC(...,'OPTION_NAME', OPTION_VALUE)
%   can be used to modify the default behavior.
%      - 'instanceCount': Usually it is assumed that one line in the input
%                         data corresponds to a single sample. However, it
%                         might be the case that there are a total of N
%                         instances with the same SCORE, out of which
%                         TARGET are classified as positive, and (N -
%                         TARGET) are classified as negative. Instead of
%                         using repeated samples with the same SCORE, we
%                         can summarize these observations by means of this
%                         option. Thus it requires a vector of the same
%                         size as TARGET.
%      - 'numThresh'    : Specify the (maximum) number of score intervals.
%                         Generally, splits are made such that each
%                         interval contains about the same number of sample
%                         lines.
%      - 'holdFigure'   : [0,1] draw into the current figure, instead of
%                         creating a new one.
%      - 'style'        : Style specification for plot command.
%      - 'plotROC'      : [0,1] Explicitly specify if ROC curve should be
%                         plotted.
%      - 'plotPR'       : [0,1] Explicitly specify if precision-recall curve
%                         should be plotted.
%      - 'plotBaseline' : [0,1] Plot a baseline of the random classifier.
%
%   By default, when output arguments are specified, as in
%         [PREC, TPR, FPR, THRESH] = PREC_REC(...),
%   no plot is generated. The arguments are the score thresholds, along
%   with the respective precisions, true-positive, and false-positive
%   rates.


optargin = size(varargin, 2);
stdargin = nargin - optargin;  

if stdargin < 2
 error('at least 2 arguments required');
end

%%  parse optional arguments(解析可选参数)
num_thresh = -1;
hold_fig = 0;
% 无输出时,画出Precision/Recall和ROC曲线
plot_roc = (nargout <= 0);  
plot_pr  = (nargout <= 0);
instance_count = -1;
style = '';
plot_baseline = 1;

i = 1;
while (i <= optargin)
 if (strcmp(varargin{i}, 'numThresh'))
    if (i >= optargin)
    error('argument required for %s', varargin{i});
    else
    num_thresh = varargin{i+1};
    i = i + 2; 
    end
 elseif (strcmp(varargin{i}, 'style'))
    if (i >= optargin)
    error('argument required for %s', varargin{i});
    else
    style = varargin{i+1};
    i = i + 2;
    end
 elseif (strcmp(varargin{i}, 'instanceCount'))
    if (i >= optargin)
    error('argument required for %s', varargin{i});
    else
    instance_count = varargin{i+1};
    i = i + 2;
    end
 elseif (strcmp(varargin{i}, 'holdFigure'))
    if (i >= optargin)
    error('argument required for %s', varargin{i});
    else
       if ~isempty(get(0,'CurrentFigure'))
       hold_fig = varargin{i+1};
       end
    i = i + 2;
    end
 elseif (strcmp(varargin{i}, 'plotROC'))
    if (i >= optargin)
    error('argument required for %s', varargin{i});
    else
    plot_roc = varargin{i+1};
    i = i + 2;
    end
 elseif (strcmp(varargin{i}, 'plotPR'))
    if (i >= optargin)
    error('argument required for %s', varargin{i});
    else
    plot_pr = varargin{i+1};
    i = i + 2;
    end
 elseif (strcmp(varargin{i}, 'plotBaseline'))
    if (i >= optargin)
    error('argument required for %s', varargin{i});
    else
    plot_baseline = varargin{i+1};
    i = i + 2;
    end
 elseif (~ischar(varargin{i}))
    error('only two numeric arguments required');
 else
 error('unknown option: %s', varargin{i});
 end
end


%% 数据处理
[nx,ny]=size(score);
if (nx~=1 && ny~=1)
 error('first argument must be a vector');
end

[mx,my]=size(target);
if (mx~=1 && my~=1)
 error('second argument must be a vector');
end
 %convert to colume vector
score  =  score(:);
target = target(:);

if (length(target) ~= length(score))
 error('score and target must have same length');
end

if (instance_count == -1)
 % set default for total instances
 instance_count = ones(length(score),1);
 target = max(min(target(:),1),0); % ensure binary target
else
 if numel(instance_count)==1
 % scalar
 instance_count = instance_count * ones(length(target), 1);
 end
 [px,py] = size(instance_count);
 if (px~=1 && py~=1)
 error('instance count must be a vector');
 end
 instance_count = instance_count(:);
 if (length(target) ~= length(instance_count))
 error('instance count must have same length as target');
 end
 target = min(instance_count, target);
end

 % set default for number of thresholds 
if num_thresh < 0
 score_uniq = unique(score);
 num_thresh = min(length(score_uniq), 100);
end
% set thresholds 
qvals = (1:(num_thresh-1))/num_thresh;
thresh = [min(score) quantile(score,qvals)];
% remove identical bins
thresh = sort(unique(thresh),2,'descend');
%计算总的target中1的个数和0的个数
total_target = sum(target);
total_neg = sum(instance_count - target);

prec = zeros(length(thresh),1);
tpr  = zeros(length(thresh),1);
fpr  = zeros(length(thresh),1);
for i = 1:length(thresh)    //进行多次检索
  %找出score值大于阈值的那部分数据target
 idx     = (score >= thresh(i));
 fpr(i)  = sum(instance_count(idx) - target(idx)); %计算这部分target中等于0的数目
 tpr(i)  = sum(target(idx));  %计算这部分target中等于1的数目
  % 查准率=搜索到的相关信息量/搜索到的所有信息量
 prec(i) = sum(target(idx)) / sum(instance_count(idx));  
end
%  查全率=搜索到的相关信息量/系统中的相关信息量
tpr=tpr / total_target;  
% 代价=搜索到的不相关信息量/系统中的不相关信息量
fpr = fpr / total_neg;    

if (plot_pr || plot_roc)
 % draw
 if (~hold_fig)
 figure
 if (plot_pr)
 if (plot_roc)
 subplot(1,2,1);
 end

 if (plot_baseline)
 target_ratio = total_target / (total_target + total_neg);  
 plot([0 1], [target_ratio target_ratio], 'k');
 end

 hold on
 hold all

 plot([0; tpr], [1 ; prec], style); % add pseudo point to complete curve
 xlabel('recall');
 ylabel('precision');
 title('precision-recall graph');
 end
 if (plot_roc)
 if (plot_pr)
 subplot(1,2,2);
 end

 if (plot_baseline)
 plot([0 1], [0 1], 'k');
 end

 hold on;
 hold all;

 plot([0; fpr], [0; tpr], style); % add pseudo point to complete curve

 xlabel('false positive rate');
 ylabel('true positive rate');
 title('roc curve');
 %axis([0 1 0 1]);
 if (plot_roc && plot_pr)
 % double the width
 rect = get(gcf,'pos');
 rect(3) = 2 * rect(3);
 set(gcf,'pos',rect);
 end
 end

 else
 if (plot_pr)
 if (plot_roc)
 subplot(1,2,1);
 end
 plot([0; tpr],[1 ; prec], style); % add pseudo point to complete curve
 end

 if (plot_roc)
 if (plot_pr)
 subplot(1,2,2);
 end
 plot([0; fpr], [0; tpr], style);
 end
 end
end

创建具体实例:

clear;
clc;
x1 = rand(1000, 1);
y1 = round(x1 + 0.5*(rand(1000,1) - 0.5));  %取整
prec_rec(x1, y1);  % 向量y1代表系统中的信息量,y1的值只能为01,y1取值为1代表相关信息量,否则为不相关信息量
% x2 = rand(1000,1);
% y2 = round(x2 + 0.75 * (rand(1000,1)-0.5));
% prec_rec(x2, y2, 'holdFigure', 1);
% legend('baseline','x1/y1','x2/y2','Location','SouthEast');
相关标签: 图像分割