区域生长与分水岭算法 图像分割
程序员文章站
2024-01-16 08:08:46
...
1.区域生长法
import numpy as np
import cv2
class Point(object):
def __init__(self,x,y):
self.x = x
self.y = y
def getX(self):
return self.x
def getY(self):
return self.y
def getGrayDiff(img,currentPoint,tmpPoint):
return abs(int(img[currentPoint.x,currentPoint.y]) - int(img[tmpPoint.x,tmpPoint.y]))
def selectConnects(p):
if p != 0:
connects = [Point(-1, -1), Point(0, -1), Point(1, -1), Point(1, 0), Point(1, 1), \
Point(0, 1), Point(-1, 1), Point(-1, 0)]
else:
connects = [ Point(0, -1), Point(1, 0),Point(0, 1), Point(-1, 0)]
return connects
def regionGrow(img,seeds,thresh,p = 1):
height, weight = img.shape
seedMark = np.zeros(img.shape)
seedList = []
for seed in seeds:
seedList.append(seed)
label = 1
connects = selectConnects(p)
while(len(seedList)>0):
currentPoint = seedList.pop(0)
seedMark[currentPoint.x,currentPoint.y] = label
for i in range(8):
tmpX = currentPoint.x + connects[i].x
tmpY = currentPoint.y + connects[i].y
if tmpX < 0 or tmpY < 0 or tmpX >= height or tmpY >= weight:
continue
grayDiff = getGrayDiff(img,currentPoint,Point(tmpX,tmpY))
if grayDiff < thresh and seedMark[tmpX,tmpY] == 0:
seedMark[tmpX,tmpY] = label
seedList.append(Point(tmpX,tmpY))
return seedMark
img = cv2.imread(r'C:\Users\feiyu\Desktop\tmy.jpg',0)
seeds = [Point(766,667),Point(666,667),Point(10,10)]
binaryImg = regionGrow(img,seeds,10)
cv2.imshow(' ',binaryImg)
cv2.waitKey(0)
效果:
2.分水岭法
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread(r'C:\Users\feiyu\Desktop\tmy.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
# sure background area
sure_bg = cv2.dilate(opening,kernel,iterations=3)#膨胀
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening,2,5)
ret, sure_fg = cv2.threshold(dist_transform,0.15*dist_transform.max(),255,0)#参数改小了,出现不确定区域
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)#减去前景
import matplotlib.pyplot as plt
plt.figure()
plt.gray()
plt.imshow(sure_fg)
plt.show()
区域生长算法代码参考:https://blog.csdn.net/weixin_40419806/article/details/80971205
分水岭算法代码参考 :https://blog.csdn.net/tengfei461807914/article/details/77620216