欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

圆和多边形面积交模板

程序员文章站 2024-01-14 18:01:52
...

hdu5130

//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
//#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0)

using namespace std;

const double eps=1e-6,PI = acos( -1.0 ) ;
const int N=500000+10,maxn=20000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;

inline double sqr( double x ){ return x * x ; }
inline int sgn( double x ){
    if ( fabs(x) < eps ) return 0 ;
    return x > 0? 1 : -1 ;
}

struct Point{
    double x , y ;
    Point(){}
    Point( double _x , double _y ): x(_x) , y(_y) {}
    void input() { scanf( "%lf%lf" ,&x ,&y ); }
    double norm() { return sqrt( sqr(x) + sqr(y) ); }

    friend Point operator + ( const Point &a , const Point &b ) { return Point( a.x + b.x , a.y + b.y ) ; }
    friend Point operator - ( const Point &a , const Point &b ) { return Point( a.x - b.x , a.y - b.y ) ; }
    friend Point operator * ( const Point &a , const double &b ) { return Point( a.x * b , a.y * b ) ; }
    friend Point operator * ( const double &a , const Point &b ) { return Point( b.x * a , b.y * a ) ; }
    friend Point operator / ( const Point &a , const double &b ) { return Point( a.x / b , a.y / b ) ; }
    friend bool operator == ( const Point &a , const Point &b ) { return sgn( a.x - b.x ) == 0 && sgn( a.y - b.y ) == 0 ; }

    bool operator < ( const Point &a )const{
        return ( sgn( x - a.x ) < 0 ) || ( sgn( x - a.x ) == 0 && sgn( y - a.y ) < 0 ) ;
    }
};

double dot( Point a , Point b ) { return a.x * b.x + a.y * b.y ; }
double det( Point a , Point b ) { return a.x * b.y - a.y * b.x ; }
double dist( Point a , Point b ) { return ( a - b ).norm() ; }

int n ;
double k ;
Point A,B ;
Point p[505] ;
Point o ;
double r ;

int CircleInterLine( Point a, Point b, Point o, double r, Point *p )
{
    Point p1 = a - o ;
    Point d = b - a ;
    double A = dot( d, d ) ;
    double B = 2 * dot( d, p1 ) ;
    double C = dot( p1, p1 ) - sqr(r) ;

    double delta = sqr(B) - 4*A*C ;
    if ( sgn(delta) < 0 ) return 0 ;//相离
    if ( sgn(delta) == 0 ) { //相切
        double t = -B / (2*A) ; // 0 <= t <= 1说明交点在线段上
        if ( sgn( t - 1 ) <= 0 && sgn( t ) >= 0 ) {
            p[0] = a + t * d ;
            return 1 ;
        }
    }
    if ( sgn(delta) > 0 ) { //相交
        double t1 = ( -B - sqrt(delta) ) / (2*A) ;
        double t2 = ( -B + sqrt(delta) ) / (2*A) ; //0 <= t1, t2 <= 1说明交点在线段上
        int k = 0 ;
        if ( sgn( t1 - 1 ) <= 0 && sgn( t1 ) >= 0 )
            p[k++] = a + t1 * d ;
        if ( sgn( t2 - 1 ) <= 0 && sgn( t2 ) >= 0 )
            p[k++] = a + t2 * d ;
        return k ;
    }
}
double Triangle_area( Point a, Point b )
{
    return fabs( det( a , b ) ) / 2.0  ;
}
double Sector_area( Point a, Point b )
{
    double ang = atan2( a.y , a.x ) - atan2( b.y, b.x  ) ;
    while ( ang <= 0 ) ang += 2 * PI ;
    while ( ang > 2 * PI ) ang -= 2 * PI ;
    ang = min( ang, 2*PI - ang ) ;
    return sqr(r) * ang/2 ;
}
double calc( Point a , Point b , double r )
{
    Point pi[2] ;
    if ( sgn( a.norm() - r ) < 0 ) {
        if ( sgn( b.norm() - r ) < 0 ) {
            return Triangle_area( a, b ) ;
        }
        else {
            CircleInterLine( a, b, Point(0,0), r, pi) ;
            return Sector_area( b, pi[0] ) + Triangle_area( a, pi[0] ) ;
        }
    }
    else {
        int cnt = CircleInterLine( a, b, Point(0,0), r, pi ) ;
        if ( sgn( b.norm() - r ) < 0 ) {
            return Sector_area( a, pi[0] ) + Triangle_area( b, pi[0] ) ;
        }
        else {
            if ( cnt == 2 )
                return Sector_area( a, pi[0] ) + Sector_area( b, pi[1] ) + Triangle_area( pi[0], pi[1] ) ;
            else
                return Sector_area( a, b ) ;
        }
    }
}
double area_CircleAndPolygon( Point *p , int n , Point o , double r )
{
    double res = 0 ;
    p[n] = p[0] ;
    for ( int i = 0 ; i < n ; i++ ) {
        int tmp = sgn( det( p[i] - o , p[i+1] - o ) ) ;
        if ( tmp )
            res += tmp * calc( p[i] - o , p[i+1] - o , r ) ;
    }
    return fabs( res ) ;
}

void gao()
{
    double a1=1.0-k*k,b1=2.0*(sqr(k)*A.x-B.x),c=sqr(B.x)+sqr(B.y)-sqr(k)*(sqr(A.x)+sqr(A.y));
    double a2=1.0-k*k,b2=2.0*(sqr(k)*A.y-B.y);
    o.x=-b1/2.0/a1,o.y=-b2/2.0/a2;
    r=sqrt(sqr(o.x)+sqr(o.y)+(sqr(k*A.x)-sqr(B.x)+sqr(k*A.y)-sqr(B.y))/a1);
//    printf("%.12f %.12f %.12f\n",o.x,o.y,r);
}
int main()
{
    int cnt=1;
    while(~scanf("%d%lf",&n,&k))
    {
        for(int i=0;i<n;i++)
            p[i].input();
        A.input(),B.input();
        gao();
        printf("Case %d: %.12f\n",cnt++,area_CircleAndPolygon(p,n,o,r));
    }
    return 0;
}
/********************

********************/