二维几何模板 -- learn from Rujia Liu
const double EPS = 1e-10;
const double PI = acos (-1.0);
int dcmp(double x) { //三态函数,减少精度问题
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
struct Point { //点的定义
double x, y;
Point () {}
Point (double x, double y) : x (x), y (y) {}
Point operator + (const Point &r) const { //向量加法
return Point (x + r.x, y + r.y);
}
Point operator - (const Point &r) const { //向量减法
return Point (x - r.x, y - r.y);
}
Point operator * (double p) const { //向量乘以标量
return Point (x * p, y * p);
}
Point operator / (double p) const { //向量除以标量
return Point (x / p, y / p);
}
bool operator < (const Point &r) const { //点的坐标排序
return x < r.x || (x == r.x && y < r.y);
}
bool operator == (const Point &r) const { //判断同一个点
return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
}
};
typedef Point Vector; //向量的定义
Point read_point(void) { //点的读入
double x, y; scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double dot(Vector A, Vector B) { //向量点积
return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B) { //向量叉积
return A.x * B.y - A.y * B.x;
}
double polar_angle(Vector A) { //向量极角
return atan2 (A.y, A.x);
}
double length(Vector A) { //向量长度,点积
return sqrt (dot (A, A));
}
double angle(Vector A, Vector B) { //向量转角,逆时针,点积
return acos (dot (A, B) / length (A) / length (B));
}
Vector rotate(Vector A, double rad) { //向量旋转,逆时针
return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A) { //向量的单位法向量
double len = length (A);
return Vector (-A.y / len, A.x / len);
}
Point line_line_inter(Point p, Vector V, Point q, Vector W) { //两直线交点,参数方程
Vector U = p - q;
double t = cross (W, U) / cross (V, W);
return p + V * t;
}
double point_to_line(Point p, Point a, Point b) { //点到直线的距离,两点式
Vector V1 = b - a, V2 = p - a;
return fabs (cross (V1, V2)) / length (V1);
}
double point_to_seg(Point p, Point a, Point b) { //点到线段的距离,两点式
if (a == b) return length (p - a);
Vector V1 = b - a, V2 = p - a, V3 = p - b;
if (dcmp (dot (V1, V2)) < 0) return length (V2);
else if (dcmp (dot (V1, V3)) > 0) return length (V3);
else return fabs (cross (V1, V2)) / length (V1);
}
Point point_line_proj(Point p, Point a, Point b) { //点在直线上的投影,两点式
Vector V = b - a;
return a + V * (dot (V, p - a) / dot (V, V));
}
bool can_seg_seg_inter(Point a1, Point a2, Point b1, Point b2) { //判断线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool can_line_seg_inter(Point a1, Point a2, Point b1, Point b2) { //判断直线与线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1);
return dcmp (c1 * c2) <= 0;
}
bool on_seg(Point p, Point a, Point b) { //判断点在线段上,两点式
return dcmp (cross (a - p, b - p)) == 0 && dcmp (dot (a - p, b - p)) < 0;
}
double area_triangle(Point a, Point b, Point c) { //三角形面积,叉积
return fabs (cross (b - a, c - a)) / 2.0;
}
double area_poly(vector<Point> ps) { //多边形面积,叉积
double ret = 0;
for (int i=1; i<ps.size ()-1; ++i) {
ret += fabs (cross (ps[i] - ps[0], ps[i+1] - ps[0])) / 2;
}
return ret;
}
/*
点集凸包,输入点的集合,返回凸包点的集合。
凸包边上无点:<= 凸包边上有点:<
*/
vector<Point> convex_hull(vector<Point> ps) {
sort (ps.begin (), ps.end ()); //x - y排序
ps.erase (unique (ps.begin (), ps.end ()), ps.end ()); //删除重复点
int n = ps.size (), k = 0;
vector<Point> qs (n * 2);
for (int i=0; i<n; ++i) {
while (k > 1 && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
for (int t=k, i=n-2; i>=0; --i) {
while (k > t && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
qs.resize (k-1);
return qs;
}
struct Circle {
Point c;
double r;
Circle () {}
Circle (Point c, double r) : c (c), r (r) {}
Point point(double a) {
return Point (c.x + cos (a) * r, c.y + sin (a) * r);
}
};
struct Line {
Point p;
Vector v;
double r;
Line () {}
Line (const Point &p, const Vector &v) : p (p), v (v) {
r = polar_angle (v);
}
Point point(double a) {
return p + v * a;
}
};
/*
直线与圆相交求交点,返回交点个数,交点保存在P中
*/
int line_cir_inter(Line L, Circle C, double &t1, double &t2, vector<Point> &P) {
double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
double delta = f * f - 4 * e * g;
if (dcmp (delta) < 0) return 0;
if (dcmp (delta) == 0) {
t1 = t2 = -f / (2 * e); P.push_back (L.point (t1));
return 1;
}
t1 = (-f - sqrt (delta)) / (2 * e);
t2 = (-f + sqrt (delta)) / (2 * e);
if (t1 > t2) swap (t1, t2);
if (dcmp (t1) > 0 && dcmp (t1 - 1) < 0) P.push_back (L.point (t1));
if (dcmp (t2) > 0 && dcmp (t2 - 1) < 0) P.push_back (L.point (t2));
return (int) P.size ();
}
/*
两圆相交求交点,返回交点个数。交点保存在P中
*/
int cir_cir_inter(Circle C1, Circle C2, vector<Point> &P) {
double d = length (C1.c - C2.c);
if (dcmp (d) == 0) {
if (dcmp (C1.r - C2.r) == 0) return -1; //两圆重叠
else return 0;
}
if (dcmp (C1.r + C2.r - d) < 0) return 0;
if (dcmp (fabs (C1.r - C2.r) - d) < 0) return 0;
double a = polar_angle (C2.c - C1.c);
double da = acos ((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d)); //C1C2到C1P1的角?
Point p1 = C1.point (a - da), p2 = C2.point (a + da);
P.push_back (p1);
if (p1 == p2) return 1;
else P.push_back (p2);
return 2;
}
/*
过点到圆的切线,返回切线条数,切线保存在V中
*/
int point_cir_tan(Point p, Circle C, Vector *V) {
Vector u = C.c - p;
double dis = length (u);
if (dis < C.r) return 0;
else if (dcmp (dis - C.r) == 0) {
V[0] = rotate (u, PI / 2); return 1;
}
else {
double ang = asin (C.r / dis);
V[0] = rotate (u, -ang);
V[1] = rotate (u, +ang);
return 0;
}
}
/*
两圆的公切线,返回公切线条数,切线短点保存在a和b中
*/
int cir_cir_tan(Circle A, Circle B, Point *a, Point *b) {
int cnt = 0;
if (A.r < B.r) {
swap (A, B); swap (a, b);
}
double d = dot (A.c - B.c, A.c - B.c);
double rsub = A.r - B.r, rsum = A.r + B.r;
if (dcmp (d - rsub) < 0) return 0; //内含
double base = polar_angle (B.c - A.c);
if (dcmp (d) == 0 && dcmp (A.r - B.r) == 0) return -1; //两圆重叠
if (dcmp (d - rsub) == 0) { //内切,一条切线
a[cnt] = A.point (base); b[cnt] = B.point (base); cnt++;
return 1;
}
//有外公切线
double ang = acos (rsub / d);
a[cnt] = A.point (base + ang); b[cnt] = B.point (base + ang); cnt++;
a[cnt] = A.point (base - ang); b[cnt] = B.point (base - ang); cnt++;
if (d == rsum) {
a[cnt] = A.point (base); b[cnt] = B.point (base + PI); cnt++;
}
else if (dcmp (d - rsum) > 0) { //两条内公切线
double ang2 = acos (rsum / d);
a[cnt] = A.point (base + ang2); b[cnt] = B.point (base + ang2 + PI); cnt++;
a[cnt] = A.point (base - ang2); b[cnt] = B.point (base - ang2 + PI); cnt++;
}
return cnt;
}
/*
多边形与圆的公共面积,上交红书模板
调用fabs (cir_poly_area (ps)),ps为多边形的点集,
需要用到line_cir_inter ()函数,圆心在原点(可平移)
*/
double sector_area(Point a, Point b, double r) { //三角剖分,求扇形面积
double theta = polar_angle (a) - polar_angle (b);
while (dcmp (theta) <= 0) theta += 2 * PI;
while (theta > 2 * PI) theta -= 2 * PI;
theta = min (theta, 2 * PI - theta);
return r * r * theta / 2;
}
double cal(Point a, Point b, double r) {
double t1, t2;
bool ina = dcmp (length (a) - r) < 0;
bool inb = dcmp (length (b) - r) < 0;
if (ina && inb) return fabs (cross (a, b)) / 2.0;
vector<Point> p;
int num = line_cir_inter (Line (a, b - a), Circle (Point (0, 0), r), t1, t2, p);
if (ina) return sector_area (b, p[0], r) + fabs (cross (a, p[0])) / 2.0;
if (inb) return sector_area (p[0], a, r) + fabs (cross (p[0], b)) / 2.0;
if (num == 2) return sector_area (a, p[0], r) + sector_area (p[1], b, r) + fabs (cross (p[0], p[1])) / 2.0;
return sector_area (a, b, r);
}
double cir_poly_area(vector<Point> &ps, double r) {
double ret = 0;
for (int i=0; i<ps.size ()-1; ++i) { //多边形最后放入ps[0]起点
int sgn = dcmp (cross (ps[i], ps[i+1]));
if (sgn != 0) {
ret += sgn * cal (ps[i], ps[i+1], r);
}
}
return ret;
}
//线段相交包括非规范相交
bool can_seg_seg_inter2(Point a1, Point a2, Point b1, Point b2) {
if (min (a1.x, a2.x) > max (b1.x, b2.x) ||
min (a1.y, a2.y) > max (b1.y, b2.y) ||
min (b1.x, b2.x) > max (a1.x, a2.x) ||
min (b1.y, b2.y) > max (a1.y, a2.y)) return false;
double c1 = (a1 - a2) ^ (a1 - b1); //叉积
double c2 = (a1 - a2) ^ (a1 - b2);
double c3 = (b1 - b2) ^ (b1 - a1);
double c4 = (b1 - b2) ^ (b1 - a2);
return dcmp (c1 * c2) <= 0 && dcmp (c3 * c4) <= 0;
}