欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

计算几何模板

程序员文章站 2024-01-14 17:31:58
...

 

二维几何模板 -- learn from Rujia Liu

 

const double EPS = 1e-10;
const double PI = acos (-1.0);
int dcmp(double x)  {       //三态函数,减少精度问题
    if (fabs (x) < EPS) return 0;
    else    return x < 0 ? -1 : 1;
}
struct Point    {       //点的定义
    double x, y;
    Point () {}
    Point (double x, double y) : x (x), y (y) {}
    Point operator + (const Point &r) const {       //向量加法
        return Point (x + r.x, y + r.y);
    }
    Point operator - (const Point &r) const {       //向量减法
        return Point (x - r.x, y - r.y);
    }
    Point operator * (double p) const {       //向量乘以标量
        return Point (x * p, y * p);
    }
    Point operator / (double p) const {       //向量除以标量
        return Point (x / p, y / p);
    }
    bool operator < (const Point &r) const {       //点的坐标排序
        return x < r.x || (x == r.x && y < r.y);
    }
    bool operator == (const Point &r) const {       //判断同一个点
        return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
    }
};
typedef Point Vector;       //向量的定义
Point read_point(void)   {      //点的读入
    double x, y;    scanf ("%lf%lf", &x, &y);
    return Point (x, y);
}
double dot(Vector A, Vector B)  {       //向量点积
    return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B)    {       //向量叉积
    return A.x * B.y - A.y * B.x;
}
double polar_angle(Vector A)  {     //向量极角
    return atan2 (A.y, A.x);
}
double length(Vector A) {       //向量长度,点积
    return sqrt (dot (A, A));
}
double angle(Vector A, Vector B)    {       //向量转角,逆时针,点积
    return acos (dot (A, B) / length (A) / length (B));
}
Vector rotate(Vector A, double rad) {       //向量旋转,逆时针
    return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A)  {       //向量的单位法向量
    double len = length (A);
    return Vector (-A.y / len, A.x / len);
}
Point line_line_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
    Vector U = p - q;
    double t = cross (W, U) / cross (V, W);
    return p + V * t;
}
double point_to_line(Point p, Point a, Point b)   {       //点到直线的距离,两点式
    Vector V1 = b - a, V2 = p - a;
    return fabs (cross (V1, V2)) / length (V1);
}
double point_to_seg(Point p, Point a, Point b)    {       //点到线段的距离,两点式
    if (a == b) return length (p - a);
    Vector V1 = b - a, V2 = p - a, V3 = p - b;
    if (dcmp (dot (V1, V2)) < 0)    return length (V2);
    else if (dcmp (dot (V1, V3)) > 0)   return length (V3);
    else    return fabs (cross (V1, V2)) / length (V1);
}
Point point_line_proj(Point p, Point a, Point b)   {     //点在直线上的投影,两点式
    Vector V = b - a;
    return a + V * (dot (V, p - a) / dot (V, V));
}
bool can_seg_seg_inter(Point a1, Point a2, Point b1, Point b2)  {       //判断线段相交,两点式
    double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
           c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
    return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool can_line_seg_inter(Point a1, Point a2, Point b1, Point b2)    {        //判断直线与线段相交,两点式
    double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1);
    return dcmp (c1 * c2) <= 0;
}
bool on_seg(Point p, Point a, Point b)    {         //判断点在线段上,两点式
    return dcmp (cross (a - p, b - p)) == 0 && dcmp (dot (a - p, b - p)) < 0;
}
double area_triangle(Point a, Point b, Point c) {       //三角形面积,叉积
    return fabs (cross (b - a, c - a)) / 2.0;
}
double area_poly(vector<Point> ps)  {       //多边形面积,叉积
    double ret = 0;
    for (int i=1; i<ps.size ()-1; ++i)  {
        ret += fabs (cross (ps[i] - ps[0], ps[i+1] - ps[0])) / 2;
    }
    return ret;
}
/*
    点集凸包,输入点的集合,返回凸包点的集合。
    凸包边上无点:<=    凸包边上有点:<
*/
vector<Point> convex_hull(vector<Point> ps) {
    sort (ps.begin (), ps.end ());		//x - y排序
    ps.erase (unique (ps.begin (), ps.end ()), ps.end ());	//删除重复点
    int n = ps.size (), k = 0;
    vector<Point> qs (n * 2);
    for (int i=0; i<n; ++i) {
        while (k > 1 && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0)  k--;
        qs[k++] = ps[i];
    }
    for (int t=k, i=n-2; i>=0; --i)  {
        while (k > t && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0)  k--;
        qs[k++] = ps[i];
    }
    qs.resize (k-1);
    return qs;
}

struct Circle   {
    Point c;
    double r;
    Circle () {}
    Circle (Point c, double r) : c (c), r (r) {}
    Point point(double a)   {
        return Point (c.x + cos (a) * r, c.y + sin (a) * r);
    }
};
struct Line {
    Point p;
    Vector v;
    double r;
    Line () {}
    Line (const Point &p, const Vector &v) : p (p), v (v) {
        r = polar_angle (v);
    }
    Point point(double a)   {
        return p + v * a;
    }
};
/*
    直线与圆相交求交点,返回交点个数,交点保存在P中
*/
int line_cir_inter(Line L, Circle C, double &t1, double &t2, vector<Point> &P)    {
    double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
    double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
    double delta = f * f - 4 * e * g;
    if (dcmp (delta) < 0)   return 0;
    if (dcmp (delta) == 0)  {
        t1 = t2 = -f / (2 * e); P.push_back (L.point (t1));
        return 1;
    }
    t1 = (-f - sqrt (delta)) / (2 * e);
    t2 = (-f + sqrt (delta)) / (2 * e);
    if (t1 > t2)    swap (t1, t2);
    if (dcmp (t1) > 0 && dcmp (t1 - 1) < 0) P.push_back (L.point (t1));
    if (dcmp (t2) > 0 && dcmp (t2 - 1) < 0) P.push_back (L.point (t2));
    return (int) P.size ();
}

/*
    两圆相交求交点,返回交点个数。交点保存在P中
*/
int cir_cir_inter(Circle C1, Circle C2, vector<Point> &P)    {
    double d = length (C1.c - C2.c);
    if (dcmp (d) == 0)  {
        if (dcmp (C1.r - C2.r) == 0)    return -1;      //两圆重叠
        else    return 0;
    }
    if (dcmp (C1.r + C2.r - d) < 0) return 0;
    if (dcmp (fabs (C1.r - C2.r) - d) < 0)  return 0;
    double a = polar_angle (C2.c - C1.c);
    double da = acos ((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));        //C1C2到C1P1的角?
    Point p1 = C1.point (a - da), p2 = C2.point (a + da);
    P.push_back (p1);
    if (p1 == p2)   return 1;
    else    P.push_back (p2);
    return 2;
}
/*
    过点到圆的切线,返回切线条数,切线保存在V中
*/
int point_cir_tan(Point p, Circle C, Vector *V) {
    Vector u = C.c - p;
    double dis = length (u);
    if (dis < C.r)  return 0;
    else if (dcmp (dis - C.r) == 0) {
        V[0] = rotate (u, PI / 2);  return 1;
    }
    else    {
        double ang = asin (C.r / dis);
        V[0] = rotate (u, -ang);
        V[1] = rotate (u, +ang);
        return 0;
    }
}
/*
    两圆的公切线,返回公切线条数,切线短点保存在a和b中
*/
int cir_cir_tan(Circle A, Circle B, Point *a, Point *b) {
    int cnt = 0;
    if (A.r < B.r)  {
        swap (A, B);    swap (a, b);
    }
    double d = dot (A.c - B.c, A.c - B.c);
    double rsub = A.r - B.r, rsum = A.r + B.r;
    if (dcmp (d - rsub) < 0)   return 0;   //内含
    double base = polar_angle (B.c - A.c);
    if (dcmp (d) == 0 && dcmp (A.r - B.r) == 0) return -1;  //两圆重叠
    if (dcmp (d - rsub) == 0)   {       //内切,一条切线
        a[cnt] = A.point (base);    b[cnt] = B.point (base);    cnt++;
        return 1;
    }
    //有外公切线
    double ang = acos (rsub / d);
    a[cnt] = A.point (base + ang);  b[cnt] = B.point (base + ang);  cnt++;
    a[cnt] = A.point (base - ang);  b[cnt] = B.point (base - ang);  cnt++;
    if (d == rsum)  {
        a[cnt] = A.point (base);    b[cnt] = B.point (base + PI);   cnt++;
    }
    else if (dcmp (d - rsum) > 0)   {       //两条内公切线
        double ang2 = acos (rsum / d);
        a[cnt] = A.point (base + ang2); b[cnt] = B.point (base + ang2 + PI);    cnt++;
        a[cnt] = A.point (base - ang2); b[cnt] = B.point (base - ang2 + PI);    cnt++;
    }
    return cnt;
}
/*
	多边形与圆的公共面积,上交红书模板
	调用fabs (cir_poly_area (ps)),ps为多边形的点集,
	需要用到line_cir_inter ()函数,圆心在原点(可平移)
*/
double sector_area(Point a, Point b, double r)    {		//三角剖分,求扇形面积
    double theta = polar_angle (a) - polar_angle (b);
    while (dcmp (theta) <= 0)   theta += 2 * PI;
    while (theta > 2 * PI)  theta -= 2 * PI;
    theta = min (theta, 2 * PI - theta);
    return r * r * theta / 2;
}
double cal(Point a, Point b, double r)    {
    double t1, t2;
    bool ina = dcmp (length (a) - r) < 0;
    bool inb = dcmp (length (b) - r) < 0;
    if (ina && inb) return fabs (cross (a, b)) / 2.0;
    vector<Point> p;
    int num = line_cir_inter (Line (a, b - a), Circle (Point (0, 0), r), t1, t2, p);
    if (ina)    return sector_area (b, p[0], r) + fabs (cross (a, p[0])) / 2.0;
    if (inb)    return sector_area (p[0], a, r) + fabs (cross (p[0], b)) / 2.0;
    if (num == 2)   return sector_area (a, p[0], r) + sector_area (p[1], b, r) + fabs (cross (p[0], p[1])) / 2.0;
    return sector_area (a, b, r);
}
double cir_poly_area(vector<Point> &ps, double r)  {
    double ret = 0;
    for (int i=0; i<ps.size ()-1; ++i) {		//多边形最后放入ps[0]起点
        int sgn = dcmp (cross (ps[i], ps[i+1]));
        if (sgn != 0)   {
            ret += sgn * cal (ps[i], ps[i+1], r);
        }
    }
    return ret;
}

 

//线段相交包括非规范相交
bool can_seg_seg_inter2(Point a1, Point a2, Point b1, Point b2) {
    if (min (a1.x, a2.x) > max (b1.x, b2.x) ||
        min (a1.y, a2.y) > max (b1.y, b2.y) ||
        min (b1.x, b2.x) > max (a1.x, a2.x) ||
        min (b1.y, b2.y) > max (a1.y, a2.y)) return false;
    double c1 = (a1 - a2) ^ (a1 - b1);      //叉积
    double c2 = (a1 - a2) ^ (a1 - b2);
    double c3 = (b1 - b2) ^ (b1 - a1);
    double c4 = (b1 - b2) ^ (b1 - a2);
    return dcmp (c1 * c2) <= 0 && dcmp (c3 * c4) <= 0;
}

  

 

 

计算几何学习资料

计算几何题目推荐