欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

C#.NET:内存管理story的图文代码介绍

程序员文章站 2024-01-13 14:16:34
...


前言

.net运行库通过垃圾回收器自动处理回收托管资源,非托管的资源需要手动编码处理。理解内存管理的工作原理,有助于提高应用程序的速度和性能。废话少说,切入正题。主要阐述的概念见下图:




C#.NET:内存管理story的图文代码介绍


概念

 内存:又称为虚拟内存,或虚拟地址空间,windows使用虚拟寻址系统,在后台自动将可用的内存地址映射到硬件内存中的实际地址上,其结果便是32位处理器上的每个进程都可以使用4GB的内存,用来存放程序的所有部分,包括可执行代码(exe文件),代码加载的所有DLL,程序运行时使用的所有变量的内容。
内存栈
 在进程的虚拟内存中,存在的一个变量的生存期必须嵌套的区域。
内存堆
 在进程的虚拟内存中,在方法退出后的很长一段时间内数据仍是可用的区域。
托管资源
 垃圾回收器在后台能自动处理的资源
非托管资源
 需要手动编码,通过析构函数,Finalize,IDisposable,Using等机制或方法处理的资源。

内存栈

 值类型数据存储在内存栈中,引用类型的实例地址值也放在内存栈中(见内存堆的讨论),内存栈的工作原理,透过下面一段代码理解:

{ //block1开始
    int a;    //solve something
    {//block2开始
       int b;       // solve something else
    }//block2结束}//block1结束

以上代码注意2点:
 1)C#中变量的作用域,遵循先声明的后超出作用域,后声明的先超出作用域,即b先释放,a后释放,释放顺序总是与它们分配内存的顺序相反。
 2)b在一个单独的块作用域(block2)中,而a所在的块名称为block1,其内嵌套着block2
 
 请看下面示意图:


C#.NET:内存管理story的图文代码介绍


 栈内存管理中,始终都维护着一个栈指针,它始终指向站区域中下一个可用的地址,名字为sp,如图所示,假定它指向编号为1000的地址。
 变量a 首先入栈,假定机子是32位的,int型占4个字节,即997~1000,入栈后,sp指向996,可见内存栈的增长方向为从高地址向低地址方向。
 然后b入栈,占据993~996,sp指向992。当超越块block2 时,变量b立即释放在内存栈上的存储,sp增加4个字节,指向996。
 向外走,超越块block1 时,变量a 立即释放,此时sp再增加4个字节,指向原来的初始地址1000,后面再入栈时,这些地址再被占用,然后再被释放,循环往复。

内存堆

 尽管栈有非常高的性能,但对于所有的变量它还是不太灵活,因为位于内存栈上的变量的生存期必须嵌套。许多情况下,这种要求过于苛刻,因为我们希望有些数据在方法退出后的很长一段时间内还是可用的。
 只要是用new运算符来请求的堆存储空间,就满足数据声明期延时性,例如所有的引用类型。在.net中使用托管堆来管理内存堆上的数据。
 .net中的托管堆和C++使用的堆不同,它在垃圾回收器的控制下工作,而C++的堆是低级的。
 既然引用类型的数据存储在托管堆上,那么它们是如何存储的呢?请看下面代码
 

void Shout()
{
   Monkey xingxing; //猴子类
   xingxing = new Monkey();
}

  在这段代码中,假定两个类Monkey和AIMonkey,其中AIMonkey类扩展了Monkey对象。
  
  在这里,我们称Monkey为一个对象,称xingxing为它的一个实例。
  
  首先,声明了一个Monkey引用xingxing,在栈上给这个引用分配存储空间,记住这仅是一个引用,而不是实际的Monkey对象。记住这一点很重要!!!
  然后看下第2行代码:

xingxing = new Monkey();

  它完成的操作:首先,它分配堆上的内存,以储存Monkey对象,注意了!!!这是一个真正的对象,它不是一个占用4个字节的地址!!! 假定Monkey对象占用64个字节,这64个字节包含了Monkey实例的字段,和.NET中用于识别和管理Monkey类实例的一些信息。这64个字节实在内存堆上分配的,假定内存堆上的地址1937~2000。new操作符返回一个内存地址,假定为997~1000,并赋值给xingxing。示意图如下所示:

C#.NET:内存管理story的图文代码介绍


记住一点:
 与内存栈不同的是,堆上的内存是向上分配的,由低地址到高地址。
 从上面的例子中,可以看出建立引用实例的过程要比建立值变量的过程更复杂,系统开销更大。那么既然开销这么大,它到底优势何在呢?引用数据类型强大到底在哪里???
 
 请看下面代码:

 {//block1
    Monkey xingxing; //猴子类
    xingxing = new Monkey();
    {//block2
      Monkey jingjing = xingxing; //jingjing也引用了Monkey对象
      //do something
    }    //jinjing超出作用域,它从栈中删除
    //现在只有xingxing还在引用Monkey}//xingxing超出作用域,它从栈中删除//现在没有在引用Monkey的了

  把一个引用实例的值xingxing赋值予另一个相同类型的实例jingjing,这样的结果便是有两个引用内存中的同一个对象Monkey了。当一个实例超出作用域时,它会从栈中删除,但引用对象的数据还是保留在堆中,一直到程序终止,或垃圾回收器回收它位置,而只有该数据不再有任何实例引用它时,它才会被删除!
  随便举一个实际应用引用的简单例子:
  

//从界面抓取数据放到list中List<Person> persons = getPersonsFromUI();
//retrieve these persons from DBList<person> personsFromDB = retrievePersonsFromDB();
//do something to personsFromDBgetSomethingToPersonsFromDB();

  请问对personsFromDB的改变,能在界面上及时相应出来吗?
  不能!
 请看下面修改代码:

//从界面抓取数据放到list中List<Person> persons = getPersonsFromUI();
//retrieve these persons from DBList<Person> personsFromDB = retrievePersonsFromDB();
int cnt = persons.Count;for(int i=0;i<cnt;i++)
{
  persons[i]= personsFromDB [i] ;
} 
//do something to personsFromDBgetSomethingToPersonsFromDB();

 修改后,数据能立即响应在界面上。因为persons与UI绑定,所有修改在persons上,自然可以立即响应。
  这就是引用数据类型的强大之处,在C#.NET中广泛使用了这个特性。这表明,我们可以对数据的生存期进行非常强大的控制,因为只要保持对数据的引用,该数据就肯定位于堆上!!!
  这也表明了基于栈的实例与基于堆的对象的生存期不匹配!

垃圾回收器 GC

   内存堆上会有碎片形成,.NET垃圾回收器会压缩内存堆,移动对象和修改对象的所有引用的地址,这是托管的堆与非托管的堆的区别之一。
   .NET的托管堆只需要读取堆指针的值即可,但是非托管的旧堆需要遍历地址链表,找出一个地方来放置新数据,所以在.NET下实例化对象要快得多。
  堆的第一部分称为第0代,这部分驻留了最新的对象。在第0代垃圾回收过程中遗留下来的旧对象放在第1代对应的部分上,依次递归下去。。。

承上启下

  以上部分便是对托管资源的内存管理部分,这些都是在后台由.NET自动执行的。下面看下非托管资源的内存管理,比如这些资源可能是UI句柄,network连接,文件句柄,Image对象等。.NET主要通过三种机制来做这件事。分别为析构函数、IDisposable接口,和两者的结合处理方法,以此实现最好的处理结果。下面分别看一下。

析构函数

  C#编译器在编译析构函数时,它会隐式地把析构函数的代码编译为等价于Finalize()方法的代码,并确定执行父类的Finalize()方法。看下面的代码:

public class Person
{
   ~Person()
   {      //析构实现
   }
}

~Person()析构函数生成的IL的C#代码:

protected override void Finalize()
{   try
   {      //析构实现
   }   finally
   {     base.Finalize();
   }
}

  放在finally块中确保父类的Finalize()一定调用。
  C#析构函数要比C++析构函数的使用少很多,因为它的问题是不确定性。在销毁C++对象时,其析构函数会立即执行。但由于C#使用垃圾回收器,无法确定C#对象的析构函数何时执行。如果对象占用了 宝贵的资源,而需要尽快释放资源,此时就不能等待垃圾回收器来释放了。
  第一次调用析构函数时,有析构函数的对象需要第二次调用析构函数,才会真正删除对象。如果频繁使用析构,对性能的影响非常大。

IDisposable接口

  在C#中,推荐使用IDisposable接口替代析构函数,该模式为释放非托管资源提供了确定的机制,而不像析构那样何时执行不确定。
  假定Person对象依赖于某些外部资源,且实现IDisposable接口,如果要释放它,可以这样:

class Person:IDisposable
{  public void Dispose()
  {    //implementation
  }
}

Person xingxing = new Person();//dom somethingxingxing .Dispose();

  上面代码如果在处理过程中出现异常,这段代码就没有释放xingxing,所以修改为:

Person xingxing = null;try{
   xingxing  = new Person();   //do something}finally{   if(xingxing !=null)
    {
        xingxing.Dispose();
    }
}

  C#提供了一种语法糖,叫做using,来简化以上操作。

using(Person xingxing = new Person())
{  // do something}

  using在此处的语义不同于普通的引用类库作用。using用在此处的功能,仅仅是简化了代码,这种语法糖可以少用!!!
  总之,实现IDisposable的对象,在释放非托管资源时,必须手动调用Dispose()方法。因此一旦忘记,就会造成资源泄漏。如下所示:

                Image backImage = this.BackgroundImage;                
                if (backImage != null)
                {
                    backImage.Dispose();
                    SessionToImage.DeleteImage(_imageFilePath, _imageFileName);                    
                    this.BackgroundImage = null;
                }

  在上面那个例子中,backImage已经确定不再用了,并且backImage又是通过Image.FromFile(fullPathWay)从物理磁盘上读取的,是非托管的资源,所以需要Dispose()一下,这样读取Image的这个进程就被关闭了。如果忘记写backImage.Dispose();就会造成资源泄漏!

结合 析构函数和IDisposable这2种机制

  一般情况下,最好的方法是实现两种机制,获得这两种机制的优点。因为正确调用Dispose()方法,同时把实现析构函数作为一种安全机制,以防没有调用Dispose()方法。请参考一种结合两种方法释放托管和非托管资源的机制:
  

public class Person:IDisposable
{   private bool isDisposed = false;   //实现IDisposable接口
   public void Dispose()
   {      //为true表示清理托管和非托管资源
      Dispose(true);      //告诉垃圾回收器不要调用析构函数了
      GC.SuppressFinalize(this);
   }   protected virtual void Dispose(bool disposing)
   {      //isDisposed: 是否对象已经被清理掉了
      if(!isDisposed)
      {          if(disposing)
          {            //清理托管资源
           }           //清理非托管资源
       }
       isDisposed = true;
   }

   ~Person()
   {     //false:调用后只清理非托管资源
     //托管资源会被垃圾回收器的一个单独线程Finalize()
     Dispose(false);
   }
}

  当这个对象的使用者,直接调用了Dispose()方法,比如

Person xingxing = new Person();//do somethingperson.Dispose();

  此时调用IDisposable.Dispose()方法,指定应清理所有与该对象相关的资源,包括托管和非托管资源。

  如果未调用Dispose()方法,则是由析构函数处理掉托管和非托管资源。

以上就是C#.NET:内存管理story的图文代码介绍的内容,更多相关内容请关注PHP中文网(www.php.cn)!

相关标签: C#,.NET,story