Mina Nio处理器
程序员文章站
2024-01-13 09:31:22
...
Mina Io处理器抽象实现:http://donald-draper.iteye.com/blog/2377663
引言:
上一篇文章我们看了Io处理器的抽象实现,先来回顾一下:
抽象Io处理器AbstractPollingIoProcessor,主要几个关键内部变量为选择操作超时时间SELECT_TIMEOUT,用于腾出时间,处理空闲的会话; executor处理器内部执行器,用于运行内部处理器Processor;存储Io处理器等线程最大线程id的threadIds(Map);创建会话队列newSessions用于存储新创建的会话;移除会话队列removingSessions用于存放从处理器移除的会话;刷新会话队列flushingSessions,用于存放要发送写请求的会话;次序控制会话队列trafficControllingSessions用于存放会话待读写的会话;Io处理器线程引用processorRef。
添加会话首先添加会话到Io处理器的创建会话队列中,启动处理器线程Processor。处理器的实际工作,尝试10次nbTries选择操作,在每次选择操作过程中,首先进行超时选择操作,然后检查Io处理器是否断开连接,尝试次数nbTries是否为零如果为0,则注册新的选择器;然后遍历创建会话队列,从队列拉取会话,如果会话为不null,则初始化会话,构建会话过滤链(从IoService继承)触发会话过滤链的会话创建和会话打开事件,并记录新创建的会话数量nSessions;更会会话状态,此过程为从会话次序控制队列获取会话,检查会话状态,如果状态为OPENED更新会话的读写状态,如果为OPENING放回次序控制会话队列;如果选择操作返回的SELECTKey的值大于0,即有相关的兴趣操作事件(读写事件),遍历选择后读写等操作就绪的会话,如果会话可读,则读取会话缓存区数据到buffer,触发过滤链消息接收事件MessageReceive,接收完消息后,如果会话输入流关闭则触发过滤链fireInputClosed事件,如果在这过程有异常发生,则触发过滤链异常事件ExceptionCaught,如果会话可写,则添加会话到刷新会话队列;遍历刷新会话队列,根据会话写请求消息类型为IoBuffer还是FileRegion,发送会话数据,发送会话数据后,如果会话还有些请求,则添加会话到队列,如果在这个过程中有异常,则添加会话到会话移除队列;遍历会话移除队列,如果会话为关闭,则尝试关闭会话,并清除会话写请求队列,如果会话数据已发送完,则触发会话过滤链消息发送事件fireMessageSent;更新处理器会话计数器nSessions;遍历处理器所有会话,触发会话过滤器会话空闲时间fireSessionIdle;如果在这个过程中,处理器会话计数器nSessions为0,则清除处理器引用;如果Io处理器正在关闭,则添加所有会话到移除会话队列,释放Io处理器先关的资源。
抽象Io处理器AbstractPollingIoProcessor主要是处理IoProcessor关联会话message*事件,而所有的工作,都是通过处理器线程Processor完成。每当有会话添加到IoProcessor,则启动一个处理器线程Processor,处理会话的读写操作及相关事件。就连IoProcessor资源的释放,也是由处理器线程Processor处理。关闭IoProcessor时,现将处理器关联会话,添加移除会话队列,实际工作由IoProcessor的子类的doDispose方法完成。
今天来看Io处理器的一个具体实现NioProcessor:
来看构造方法
从构造函数可以看出,NioProcessor主要是初始化线程执行器和选择器。
再来选择操作:
从上来看Nio处理器的选择操作,实际通过内部的选择器完成。
再来看注册新选择器
从上可以看着注册新选择器,主要是注册旧选择器的选择key(集合)关联的会话,通道,及通道兴趣事件集到新的选择器;会话时附加在通道选择key的Attachment上。
再看其他操作
再来看读写操作
从上面来看,处理器处理会话读写操作,主要是通过会话关联的通道完成。
下面我们贴出NioSession的代码,以便理解Nio处理器,
从NioSession的定义可以看出,Nio会话关联一个Io处理器IoProcessor,选择通道Channel,选择key(SelectionKey)和一个过滤链IoFilterChain。其实个人感觉NioProcessor和NioSession我们可以理解为Java Nio中选择器Selector与选择通道Channel。
总结:
NioProcessor内部有一个选择器Selector,一个可重入读写锁用于控制选择器相关的操作,构造主要是初始化线程执行器和选择器。Nio处理器的选择操作,唤醒等操作,实际通过内部的选择器完成。初始化会话,主要是配置会话通道为非阻塞模式,注册会话通道读事件到选择器。注册新选择器,主要是注册旧选择器的选择key(集合)关联的会话,通道,及通道兴趣事件集到新的选择器;会话时附加在通道选择key的Attachment上。处理器处理会话读写操作,主要是通过会话关联的通道完成。关闭会话主要是关闭会话关联的字节通道和取消会话关联选择key。
附:
//IoSessionIterator
引言:
上一篇文章我们看了Io处理器的抽象实现,先来回顾一下:
抽象Io处理器AbstractPollingIoProcessor,主要几个关键内部变量为选择操作超时时间SELECT_TIMEOUT,用于腾出时间,处理空闲的会话; executor处理器内部执行器,用于运行内部处理器Processor;存储Io处理器等线程最大线程id的threadIds(Map);创建会话队列newSessions用于存储新创建的会话;移除会话队列removingSessions用于存放从处理器移除的会话;刷新会话队列flushingSessions,用于存放要发送写请求的会话;次序控制会话队列trafficControllingSessions用于存放会话待读写的会话;Io处理器线程引用processorRef。
添加会话首先添加会话到Io处理器的创建会话队列中,启动处理器线程Processor。处理器的实际工作,尝试10次nbTries选择操作,在每次选择操作过程中,首先进行超时选择操作,然后检查Io处理器是否断开连接,尝试次数nbTries是否为零如果为0,则注册新的选择器;然后遍历创建会话队列,从队列拉取会话,如果会话为不null,则初始化会话,构建会话过滤链(从IoService继承)触发会话过滤链的会话创建和会话打开事件,并记录新创建的会话数量nSessions;更会会话状态,此过程为从会话次序控制队列获取会话,检查会话状态,如果状态为OPENED更新会话的读写状态,如果为OPENING放回次序控制会话队列;如果选择操作返回的SELECTKey的值大于0,即有相关的兴趣操作事件(读写事件),遍历选择后读写等操作就绪的会话,如果会话可读,则读取会话缓存区数据到buffer,触发过滤链消息接收事件MessageReceive,接收完消息后,如果会话输入流关闭则触发过滤链fireInputClosed事件,如果在这过程有异常发生,则触发过滤链异常事件ExceptionCaught,如果会话可写,则添加会话到刷新会话队列;遍历刷新会话队列,根据会话写请求消息类型为IoBuffer还是FileRegion,发送会话数据,发送会话数据后,如果会话还有些请求,则添加会话到队列,如果在这个过程中有异常,则添加会话到会话移除队列;遍历会话移除队列,如果会话为关闭,则尝试关闭会话,并清除会话写请求队列,如果会话数据已发送完,则触发会话过滤链消息发送事件fireMessageSent;更新处理器会话计数器nSessions;遍历处理器所有会话,触发会话过滤器会话空闲时间fireSessionIdle;如果在这个过程中,处理器会话计数器nSessions为0,则清除处理器引用;如果Io处理器正在关闭,则添加所有会话到移除会话队列,释放Io处理器先关的资源。
抽象Io处理器AbstractPollingIoProcessor主要是处理IoProcessor关联会话message*事件,而所有的工作,都是通过处理器线程Processor完成。每当有会话添加到IoProcessor,则启动一个处理器线程Processor,处理会话的读写操作及相关事件。就连IoProcessor资源的释放,也是由处理器线程Processor处理。关闭IoProcessor时,现将处理器关联会话,添加移除会话队列,实际工作由IoProcessor的子类的doDispose方法完成。
今天来看Io处理器的一个具体实现NioProcessor:
/** * A processor for incoming and outgoing data get and written on a TCP socket. * * @author [url=http://mina.apache.org]Apache MINA Project[/url] */ public final class NioProcessor extends AbstractPollingIoProcessor<NioSession> { /** The selector associated with this processor */ private Selector selector;//选择器 /** A lock used to protect concurent access to the selector */ private ReadWriteLock selectorLock = new ReentrantReadWriteLock(); private SelectorProvider selectorProvider = null;//选择器提供者 }
来看构造方法
/** * * Creates a new instance of NioProcessor. * * @param executor The executor to use */ public NioProcessor(Executor executor) { super(executor); try { // Open a new selector selector = Selector.open(); } catch (IOException e) { throw new RuntimeIoException("Failed to open a selector.", e); } } /** * * Creates a new instance of NioProcessor. * * @param executor The executor to use * @param selectorProvider The Selector provider to use */ public NioProcessor(Executor executor, SelectorProvider selectorProvider) { super(executor); try { // Open a new selector if (selectorProvider == null) { selector = Selector.open(); } else { this.selectorProvider = selectorProvider; selector = selectorProvider.openSelector(); } } catch (IOException e) { throw new RuntimeIoException("Failed to open a selector.", e); } }
从构造函数可以看出,NioProcessor主要是初始化线程执行器和选择器。
再来选择操作:
@Override protected int select(long timeout) throws Exception { selectorLock.readLock().lock(); try { return selector.select(timeout); } finally { selectorLock.readLock().unlock(); } } @Override protected int select() throws Exception { selectorLock.readLock().lock(); try { return selector.select(); } finally { selectorLock.readLock().unlock(); } }
从上来看Nio处理器的选择操作,实际通过内部的选择器完成。
@Override protected boolean isSelectorEmpty() { selectorLock.readLock().lock(); try { return selector.keys().isEmpty(); } finally { selectorLock.readLock().unlock(); } } @Override protected void wakeup() { wakeupCalled.getAndSet(true); selectorLock.readLock().lock(); try { selector.wakeup(); } finally { selectorLock.readLock().unlock(); } } @Override protected Iterator<NioSession> allSessions() { selectorLock.readLock().lock(); try { return new IoSessionIterator(selector.keys()); } finally { selectorLock.readLock().unlock(); } } @SuppressWarnings("synthetic-access") @Override protected Iterator<NioSession> selectedSessions() { return new IoSessionIterator(selector.selectedKeys()); } //初始化会话,主要是配置会话通道为非阻塞模式,注册会话通道读事件到选择器 @Override protected void init(NioSession session) throws Exception { SelectableChannel ch = (SelectableChannel) session.getChannel(); ch.configureBlocking(false); selectorLock.readLock().lock(); try { session.setSelectionKey(ch.register(selector, SelectionKey.OP_READ, session)); } finally { selectorLock.readLock().unlock(); } } @Override //关闭会话关联的字节通道及选择key protected void destroy(NioSession session) throws Exception { ByteChannel ch = session.getChannel(); SelectionKey key = session.getSelectionKey(); if (key != null) { key.cancel(); } if ( ch.isOpen() ) { ch.close(); } }
再来看注册新选择器
/** * In the case we are using the java select() method, this method is used to * trash the buggy selector and create a new one, registering all the * sockets on it. */ @Override protected void registerNewSelector() throws IOException { selectorLock.writeLock().lock(); try { //获取选择器选择key集合 Set<SelectionKey> keys = selector.keys(); Selector newSelector; //创建一个新的选择器 // Open a new selector if (selectorProvider == null) { newSelector = Selector.open(); } else { newSelector = selectorProvider.openSelector(); } //注册旧选择器的选择key关联的会话,通道,及通道兴趣事件集到新的选择器。 // Loop on all the registered keys, and register them on the new selector for (SelectionKey key : keys) { SelectableChannel ch = key.channel(); // Don't forget to attache the session, and back ! NioSession session = (NioSession) key.attachment(); SelectionKey newKey = ch.register(newSelector, key.interestOps(), session); session.setSelectionKey(newKey); } // Now we can close the old selector and switch it selector.close(); selector = newSelector; } finally { selectorLock.writeLock().unlock(); } }
从上可以看着注册新选择器,主要是注册旧选择器的选择key(集合)关联的会话,通道,及通道兴趣事件集到新的选择器;会话时附加在通道选择key的Attachment上。
再看其他操作
/** * {@inheritDoc} */ @Override //判断处理器是否关闭,主要是看注册到选择器的选择key关联的通道是否有断开连接, //有一个断开连接,则处理器断开连接 protected boolean isBrokenConnection() throws IOException { // A flag set to true if we find a broken session boolean brokenSession = false; selectorLock.readLock().lock(); try { // Get the selector keys Set<SelectionKey> keys = selector.keys(); // Loop on all the keys to see if one of them // has a closed channel for (SelectionKey key : keys) { SelectableChannel channel = key.channel(); if (((channel instanceof DatagramChannel) && !((DatagramChannel) channel).isConnected()) || ((channel instanceof SocketChannel) && !((SocketChannel) channel).isConnected())) { // The channel is not connected anymore. Cancel // the associated key then. key.cancel(); // Set the flag to true to avoid a selector switch brokenSession = true; } } } finally { selectorLock.readLock().unlock(); } return brokenSession; } /** * {@inheritDoc} 如果会话关联的选择key有效,即会话状态为打开,为null则正在打开,否则会话关闭。 */ @Override protected SessionState getState(NioSession session) { SelectionKey key = session.getSelectionKey(); if (key == null) { // The channel is not yet registred to a selector return SessionState.OPENING; } if (key.isValid()) { // The session is opened return SessionState.OPENED; } else { // The session still as to be closed return SessionState.CLOSING; } } //会话是否可读 @Override protected boolean isReadable(NioSession session) { SelectionKey key = session.getSelectionKey(); return (key != null) && key.isValid() && key.isReadable(); } //会话是否可写 @Override protected boolean isWritable(NioSession session) { SelectionKey key = session.getSelectionKey(); return (key != null) && key.isValid() && key.isWritable(); } //会话是否可读 @Override protected boolean isInterestedInRead(NioSession session) { SelectionKey key = session.getSelectionKey(); return (key != null) && key.isValid() && ((key.interestOps() & SelectionKey.OP_READ) != 0); } //是否关注写事件 @Override protected boolean isInterestedInWrite(NioSession session) { SelectionKey key = session.getSelectionKey(); return (key != null) && key.isValid() && ((key.interestOps() & SelectionKey.OP_WRITE) != 0); } /** * {@inheritDoc} 设置读事件为会话兴趣事件 */ @Override protected void setInterestedInRead(NioSession session, boolean isInterested) throws Exception { SelectionKey key = session.getSelectionKey(); if ((key == null) || !key.isValid()) { return; } int oldInterestOps = key.interestOps(); int newInterestOps = oldInterestOps; if (isInterested) { newInterestOps |= SelectionKey.OP_READ; } else { newInterestOps &= ~SelectionKey.OP_READ; } if (oldInterestOps != newInterestOps) { key.interestOps(newInterestOps); } } /** * {@inheritDoc} 设置写事件为会话兴趣事件 */ @Override protected void setInterestedInWrite(NioSession session, boolean isInterested) throws Exception { SelectionKey key = session.getSelectionKey(); if ((key == null) || !key.isValid()) { return; } int newInterestOps = key.interestOps(); if (isInterested) { newInterestOps |= SelectionKey.OP_WRITE; } else { newInterestOps &= ~SelectionKey.OP_WRITE; } key.interestOps(newInterestOps); }
再来看读写操作
@Override protected int read(NioSession session, IoBuffer buf) throws Exception { ByteChannel channel = session.getChannel(); //委托给会话关联通道 return channel.read(buf.buf()); } @Override //委托给会话关联通道 protected int write(NioSession session, IoBuffer buf, int length) throws IOException { if (buf.remaining() <= length) { return session.getChannel().write(buf.buf()); } int oldLimit = buf.limit(); buf.limit(buf.position() + length); try { return session.getChannel().write(buf.buf()); } finally { buf.limit(oldLimit); } } @Override protected int transferFile(NioSession session, FileRegion region, int length) throws Exception { try { return (int) region.getFileChannel().transferTo(region.getPosition(), length, session.getChannel()); } catch (IOException e) { // Check to see if the IOException is being thrown due to // http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=5103988 String message = e.getMessage(); if ((message != null) && message.contains("temporarily unavailable")) { return 0; } throw e; } }
从上面来看,处理器处理会话读写操作,主要是通过会话关联的通道完成。
@Override protected void doDispose() throws Exception { selectorLock.readLock().lock(); try { selector.close();//关闭选择器 } finally { selectorLock.readLock().unlock(); } }
下面我们贴出NioSession的代码,以便理解Nio处理器,
public abstract class NioSession extends AbstractIoSession { protected final IoProcessor processor;//Io处理器 protected final Channel channel;//选择通道 private SelectionKey key;//选择key private final IoFilterChain filterChain = new DefaultIoFilterChain(this);//过滤链 protected NioSession(IoProcessor processor, IoService service, Channel channel) { super(service); this.channel = channel; this.processor = processor; } abstract ByteChannel getChannel(); public IoFilterChain getFilterChain() { return filterChain; } SelectionKey getSelectionKey() { return key; } void setSelectionKey(SelectionKey key) { this.key = key; } public IoProcessor getProcessor() { return processor; } public final boolean isActive() { return key.isValid(); } }
从NioSession的定义可以看出,Nio会话关联一个Io处理器IoProcessor,选择通道Channel,选择key(SelectionKey)和一个过滤链IoFilterChain。其实个人感觉NioProcessor和NioSession我们可以理解为Java Nio中选择器Selector与选择通道Channel。
总结:
NioProcessor内部有一个选择器Selector,一个可重入读写锁用于控制选择器相关的操作,构造主要是初始化线程执行器和选择器。Nio处理器的选择操作,唤醒等操作,实际通过内部的选择器完成。初始化会话,主要是配置会话通道为非阻塞模式,注册会话通道读事件到选择器。注册新选择器,主要是注册旧选择器的选择key(集合)关联的会话,通道,及通道兴趣事件集到新的选择器;会话时附加在通道选择key的Attachment上。处理器处理会话读写操作,主要是通过会话关联的通道完成。关闭会话主要是关闭会话关联的字节通道和取消会话关联选择key。
附:
//IoSessionIterator
/** * An encapsulating iterator around the {@link Selector#selectedKeys()} or * the {@link Selector#keys()} iterator; */ protected static class IoSessionIterator<NioSession> implements Iterator<NioSession> { private final Iterator<SelectionKey> iterator; /** * Create this iterator as a wrapper on top of the selectionKey Set. * * @param keys * The set of selected sessions */ private IoSessionIterator(Set<SelectionKey> keys) { iterator = keys.iterator(); } /** * {@inheritDoc} */ @Override public boolean hasNext() { return iterator.hasNext(); } /** * {@inheritDoc} */ @Override public NioSession next() { SelectionKey key = iterator.next(); return (NioSession) key.attachment(); } /** * {@inheritDoc} */ @Override public void remove() { iterator.remove(); } } }