2018年湘潭大学程序设计竞赛G又见斐波那契(矩阵快速幂)
程序员文章站
2024-01-12 08:20:10
题意 题目链接 Sol 直接矩阵快速幂 推出来的矩阵应该长这样 \begin{equation*}\begin{bmatrix}1&1&1&1&1&1\\1 & 0&0&0&0&0\\0 & 0&1&3&3&1\\0 & 0&0&1&2&1\\0 & 0&0&0&1&1\\0 & 0&0&0&0&1 ......
题意
sol
直接矩阵快速幂
推出来的矩阵应该长这样
\begin{equation*}
\begin{bmatrix}
1&1&1&1&1&1\\
1 & 0&0&0&0&0\\
0 & 0&1&3&3&1\\
0 & 0&0&1&2&1\\
0 & 0&0&0&1&1\\
0 & 0&0&0&0&1\\
\end{bmatrix}^{i - 1}*
\begin{bmatrix}
f_{1}\\
f_0\\
1\\
1\\
1\\
1
\end{bmatrix}=
\begin{bmatrix}
1&1&1&1&1&1\\
1 & 0&0&0&0&0\\
0 & 0&1&3&3&1\\
0 & 0&0&1&2&1\\
0 & 0&0&0&1&1\\
0 & 0&0&0&0&1\\
\end{bmatrix}*
\begin{bmatrix}
f_{i - 1}\\
f_{i - 2}\\
i^3\\
i^2\\
i\\
1
\end{bmatrix}=
\begin{bmatrix}
f_{i}\\
f_{i - 1}\\
(i + 1)^3\\
(i + 1)^2\\
i + 1\\
1
\end{bmatrix}
\end{equation*}
#include<cstdio> #include<algorithm> #include<queue> #include<cstring> #define pair pair<int, int> #define mp(x, y) make_pair(x, y) #define fi first #define se second #define ll long long //#define int long long using namespace std; const int mod = 1e9 + 7; inline ll read() { char c = getchar(); ll x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int t; ll n; struct matrix { ll a[10][10], n; matrix() { n = 6; memset(a, 0, sizeof(a)); } matrix operator * (const matrix &rhs) const { matrix ans; for(int k = 1; k <= n; k++) for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) (ans.a[i][j] += (1ll * a[i][k] * rhs.a[k][j]) % mod) %= mod; return ans; } }; matrix fp(matrix a, ll p) { matrix base; // printf("%d", base.a[0][1]); for(int i = 1; i <= 6; i++) base.a[i][i] = 1; while(p) { if(p & 1) base = base * a; a = a * a; p >>= 1; } return base; } const ll gg[10][10] = { {0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1}, {0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 3, 3, 1}, {0, 0, 0, 0, 1, 2, 1}, {0, 0, 0, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 1} }; int main() { t = read(); while(t--) { n = read(); if(n == 1) {puts("1"); continue;} if(n == 2) {puts("16"); continue;} matrix m; memcpy(m.a, gg, sizeof(m.a)); matrix ans = fp(m, n - 2); ll out = 0; (out += ans.a[1][1] * 16) %= mod; (out += ans.a[1][2] * 1) %= mod; (out += ans.a[1][3] * 27) %= mod; (out += ans.a[1][4] * 9) %= mod; (out += ans.a[1][5] * 3) %= mod; (out += ans.a[1][6]) %= mod; printf("%lld\n", out % mod); } return 0; } /* 5 4 1 2 3 100 */