python OpenCV学习笔记
程序员文章站
2024-01-08 17:25:10
图像翻转使用python的一个包,imutils。使用下面的指令可以安装。pip install imutilsimutils包的github地址:csdn镜像:可以在上面这个地址里面学习更多的使用方...
图像翻转
使用python的一个包,imutils。使用下面的指令可以安装。
pip install imutils
imutils包的github地址:
csdn镜像:
可以在上面这个地址里面学习更多的使用方式。
import cv2 import imutils ''' imutils.rotate 第一个参数是翻转的图像,第二个参数的翻转角度 函数还提供翻转中心的设置,但默认就是中心翻转。 ''' vc = cv2.videocapture(0) if vc.isopened(): flag, frame = vc.read() img = imutils.rotate(frame, 180) # 图像翻转 cv2.imshow("frame", img) else: flag = false while flag: flag, frame = vc.read() if frame is none: break if flag is true: img = imutils.rotate(frame, 180) # 图像翻转 cv2.imshow("frame", img) if cv2.waitkey(10) == 27: break vc.release() cv2.destroyallwindows()
这样写的话,最后的输出图像就是翻转180度的。
imutils包里还有其他好用的函数,resizing、4-point perspective transform、sorting contours等等。
图像轮廓排序
这个效果同样也是依靠imutils包完成。
from imutils import contours import cv2 ''' contours.sort_contours 可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top" 返回值为轮廓和外接矩形 contours.label_contour contours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号 也可以直接使用cv2.drawcontours直接画轮廓 ''' img = cv2.imread(r"d:\opencv-workspace\opencv\test17--vscode\shapes.png") draw_img = img.copy() img_rect = img.copy() gray = cv2.cvtcolor(img, cv2.color_bgr2gray) img = cv2.canny(gray, 10, 20) # canny边缘检测 cnts, hierarchy = cv2.findcontours(img, cv2.retr_external, cv2.chain_approx_none) # 获得轮廓 (cnts, boundingboxes) = contours.sort_contours(cnts, "top-to-bottom") # 对轮廓进行排序处理 for (i, c) in enumerate(cnts): sortedimage = contours.label_contour(draw_img, c, i, color=(240, 0, 159)) # img_out = cv2.drawcontours(draw_img, cnts, -1, (240, 0, 159), 2) # 根据boundingboxes画外接矩形 for (x, y, w, h) in boundingboxes: img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2) cv2.imshow("top-to-bottom", sortedimage) cv2.imshow("rect", img_rect) cv2.waitkey(0) cv2.destroyallwindows()
这样写的话,最后的输出图像就是翻转180度的。
imutils包里还有其他好用的函数,resizing、4-point perspective transform、sorting contours等等。
图像轮廓排序
这个效果同样也是依靠imutils包完成。
from imutils import contours import cv2 ''' contours.sort_contours 可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top" 返回值为轮廓和外接矩形 contours.label_contour contours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号 也可以直接使用cv2.drawcontours直接画轮廓 ''' img = cv2.imread(r"d:\opencv-workspace\opencv\test17--vscode\shapes.png") draw_img = img.copy() img_rect = img.copy() gray = cv2.cvtcolor(img, cv2.color_bgr2gray) img = cv2.canny(gray, 10, 20) # canny边缘检测 cnts, hierarchy = cv2.findcontours(img, cv2.retr_external, cv2.chain_approx_none) # 获得轮廓 (cnts, boundingboxes) = contours.sort_contours(cnts, "top-to-bottom") # 对轮廓进行排序处理 for (i, c) in enumerate(cnts): sortedimage = contours.label_contour(draw_img, c, i, color=(240, 0, 159)) # img_out = cv2.drawcontours(draw_img, cnts, -1, (240, 0, 159), 2) # 根据boundingboxes画外接矩形 for (x, y, w, h) in boundingboxes: img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2) cv2.imshow("top-to-bottom", sortedimage) cv2.imshow("rect", img_rect) cv2.waitkey(0) cv2.destroyallwindows()
颜色识别
基础颜色识别
颜色识别是在hsv空间内进行的,因此在使用之前先进行颜色空间的转换。
'''使用下面这个函数进行转换,第一个参数填写要转换的图片,第二个参数填写cv2.color_bgr2hsv''' cv2.cvtcolor
import cv2 import numpy as np ''' cv2.inrange 函数很简单,参数有三个 第一个参数:hsv指的是原图 第二个参数:lower_red指的是图像中低于这个lower_red的值,图像值变为0 第三个参数:upper_red指的是图像中高于这个upper_red的值,图像值变为0 而在lower_red~upper_red之间的值变成255 ''' # 阈值 lower_green = np.array([50, 255, 255]) upper_green = np.array([70, 255, 255]) img = cv2.imread(r"d:\opencv-workspace\opencv\test16--vscode\photo.jpg") img_hsv = cv2.cvtcolor(img, cv2.color_bgr2hsv) mask_green = cv2.inrange(img_hsv, lower_green, upper_green) cv2.imshow("img_or", mask_green) # 使用下面这个函数能显示原来的颜色。 res_green = cv2.bitwise_and(img, img, mask=mask_green) cv2.imshow("img", res_green) cv2.waitkey(0) cv2.destroyallwindows()
在进行颜色识别时,难免会出现“漏颜色”的现象,也就是会出现没识别全的现象。这个时候可以再对图像进行处理,比如说进行形态学处理,让图像更加饱满之类的。
根据bgr获取hsv
import cv2 color = np.uint8([[[193, 189, 147]]]) # 参数填写bgr的值 hsv = cv2.cvtcolor(color, cv2.color_bgr2hsv) print(hsv) # 打印出来的数值就是对应的hsv值
程序运行的结果是
[[[ 93 61 193]]]
这个就是对应的hsv的值。
根据之前写的颜色识别,就需要把对应的阈值写出。具体写法就是保持s和v不变,h加减10。这样的话就可以写出高低阈值然后应用到颜色识别里面就可以了。
阈值编辑器
import cv2 import numpy as np def function(x): lowh = cv2.gettrackbarpos("lowh", "img_666") lows = cv2.gettrackbarpos("lows", "img_666") lowv = cv2.gettrackbarpos("lowv", "img_666") highh = cv2.gettrackbarpos("highh", "img_666") highs = cv2.gettrackbarpos("highs", "img_666") highv = cv2.gettrackbarpos("highv", "img_666") # print(lowh, lows, lowv, highh, highs, highv) lower = np.uint8([lowh, lows, lowv]) upper = np.uint8([highh, highs, highv]) mask = cv2.inrange(img_hsv, lower, upper) res = cv2.bitwise_and(img, img, mask=mask) cv2.imshow("img", res) img = cv2.imread(r"d:\opencv-workspace\opencv\test16--vscode\test.jpg") img_hsv = cv2.cvtcolor(img, cv2.color_bgr2hsv) cv2.namedwindow("img_666") cv2.createtrackbar("lowh", "img_666", 0, 179, function) cv2.createtrackbar("lows", "img_666", 0, 255, function) cv2.createtrackbar("lowv", "img_666", 0, 255, function) cv2.createtrackbar("highh", "img_666", 0, 179, function) cv2.createtrackbar("highs", "img_666", 0, 255, function) cv2.createtrackbar("highv", "img_666", 0, 255, function) cv2.imshow("img", img) cv2.waitkey(0) cv2.destroyallwindows()
写了一个比较垃圾的阈值编辑器。。。就不多解释了。。
以上就是python opencv学习笔记的详细内容,更多关于python opencv的资料请关注其它相关文章!