Python实现的线性回归算法示例【附csv文件下载】
程序员文章站
2024-01-08 16:18:52
本文实例讲述了python实现的线性回归算法。分享给大家供大家参考,具体如下:
用python实现线性回归
using python to implement line...
本文实例讲述了python实现的线性回归算法。分享给大家供大家参考,具体如下:
用python实现线性回归
using python to implement line regression algorithm
小菜鸟记录学习过程
代码:
#encoding:utf-8 """ author: njulpy version: 1.0 data: 2018/04/09 project: using python to implement lineregression algorithm """ import numpy as np import pandas as pd from numpy.linalg import inv from numpy import dot from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn import linear_model # 最小二乘法 def lms(x_train,y_train,x_test): theta_n = dot(dot(inv(dot(x_train.t, x_train)), x_train.t), y_train) # theta = (x'x)^(-1)x'y #print(theta_n) y_pre = dot(x_test,theta_n) mse = np.average((y_test-y_pre)**2) #print(len(y_pre)) #print(mse) return theta_n,y_pre,mse #梯度下降算法 def train(x_train, y_train, num, alpha,m, n): beta = np.ones(n) for i in range(num): h = np.dot(x_train, beta) # 计算预测值 error = h - y_train.t # 计算预测值与训练集的差值 delt = 2*alpha * np.dot(error, x_train)/m # 计算参数的梯度变化值 beta = beta - delt #print('error', error) return beta if __name__ == "__main__": iris = pd.read_csv('iris.csv') iris['bias'] = float(1) x = iris[['sepal.width', 'petal.length', 'petal.width', 'bias']] y = iris['sepal.length'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=5) t = np.arange(len(x_test)) m, n = np.shape(x_train) # leastsquare theta_n, y_pre, mse = lms(x_train, y_train, x_test) # plt.plot(t, y_test, label='test') # plt.plot(t, y_pre, label='predict') # plt.show() # gradientdescent beta = train(x_train, y_train, 1000, 0.001, m, n) y_predict = np.dot(x_test, beta.t) # plt.plot(t, y_predict) # plt.plot(t, y_test) # plt.show() # sklearn regr = linear_model.linearregression() regr.fit(x_train, y_train) y_p = regr.predict(x_test) print(regr.coef_,theta_n,beta) l1,=plt.plot(t, y_predict) l2,=plt.plot(t, y_p) l3,=plt.plot(t, y_pre) l4,=plt.plot(t, y_test) plt.legend(handles=[l1, l2,l3,l4 ], labels=['gradientdescent', 'sklearn','leastsquare','true'], loc='best') plt.show()
输出结果
sklearn: [ 0.65368836 0.70955523 -0.54193454 0. ]
leastsquare: [ 0.65368836 0.70955523 -0.54193454 1.84603897]
gradientdescent: [ 0.98359285 0.29325906 0.60084232 1.006859 ]
附:上述示例中的iris.csv文件。
更多关于python相关内容感兴趣的读者可查看本站专题:《python数学运算技巧总结》、《python数据结构与算法教程》、《python函数使用技巧总结》、《python字符串操作技巧汇总》及《python入门与进阶经典教程》
希望本文所述对大家python程序设计有所帮助。