欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python实现的线性回归算法示例【附csv文件下载】

程序员文章站 2024-01-08 16:18:52
本文实例讲述了python实现的线性回归算法。分享给大家供大家参考,具体如下: 用python实现线性回归 using python to implement line...

本文实例讲述了python实现的线性回归算法。分享给大家供大家参考,具体如下:

用python实现线性回归

using python to implement line regression algorithm

小菜鸟记录学习过程

代码:

#encoding:utf-8
"""
  author:   njulpy
  version:   1.0
  data:   2018/04/09
  project: using python to implement lineregression algorithm
"""
import numpy as np
import pandas as pd
from numpy.linalg import inv
from numpy import dot
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn import linear_model
# 最小二乘法
def lms(x_train,y_train,x_test):
  theta_n = dot(dot(inv(dot(x_train.t, x_train)), x_train.t), y_train) # theta = (x'x)^(-1)x'y
  #print(theta_n)
  y_pre = dot(x_test,theta_n)
  mse = np.average((y_test-y_pre)**2)
  #print(len(y_pre))
  #print(mse)
  return theta_n,y_pre,mse
#梯度下降算法
def train(x_train, y_train, num, alpha,m, n):
  beta = np.ones(n)
  for i in range(num):
    h = np.dot(x_train, beta)       # 计算预测值
    error = h - y_train.t         # 计算预测值与训练集的差值
    delt = 2*alpha * np.dot(error, x_train)/m # 计算参数的梯度变化值
    beta = beta - delt
    #print('error', error)
  return beta
if __name__ == "__main__":
  iris = pd.read_csv('iris.csv')
  iris['bias'] = float(1)
  x = iris[['sepal.width', 'petal.length', 'petal.width', 'bias']]
  y = iris['sepal.length']
  x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=5)
  t = np.arange(len(x_test))
  m, n = np.shape(x_train)
  # leastsquare
  theta_n, y_pre, mse = lms(x_train, y_train, x_test)
  # plt.plot(t, y_test, label='test')
  # plt.plot(t, y_pre, label='predict')
  # plt.show()
  # gradientdescent
  beta = train(x_train, y_train, 1000, 0.001, m, n)
  y_predict = np.dot(x_test, beta.t)
  # plt.plot(t, y_predict)
  # plt.plot(t, y_test)
  # plt.show()
  # sklearn
  regr = linear_model.linearregression()
  regr.fit(x_train, y_train)
  y_p = regr.predict(x_test)
  print(regr.coef_,theta_n,beta)
  l1,=plt.plot(t, y_predict)
  l2,=plt.plot(t, y_p)
  l3,=plt.plot(t, y_pre)
  l4,=plt.plot(t, y_test)
  plt.legend(handles=[l1, l2,l3,l4 ], labels=['gradientdescent', 'sklearn','leastsquare','true'], loc='best')
  plt.show()

输出结果

Python实现的线性回归算法示例【附csv文件下载】

sklearn: [ 0.65368836  0.70955523 -0.54193454  0.        ]
 leastsquare: [ 0.65368836  0.70955523 -0.54193454  1.84603897]
 gradientdescent: [ 0.98359285  0.29325906  0.60084232  1.006859  ]

附:上述示例中的iris.csv文件。

更多关于python相关内容感兴趣的读者可查看本站专题:《python数学运算技巧总结》、《python数据结构与算法教程》、《python函数使用技巧总结》、《python字符串操作技巧汇总》及《python入门与进阶经典教程

希望本文所述对大家python程序设计有所帮助。