「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛
题目链接
题目描述
输入一个整数n和一个整数p,你需要求出
\[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]
其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数
输入
一行两个整数\(p,n\)
输出
一行一个整数,为题目中所求值
样例
样例输入
998244353 2000
样例输出
883968974
数据范围
\(n\leq 10^{10}\)
\(5\times 10^8 \leq p \leq 1.1\times 10^9\)
\(p\)为质数(但貌似也可以不是?又不用求逆元)
题解
自己想出来的题!但是连\(WA\)两发就是因为杜教筛写挂了……
先不考虑取余,我们化一下题目中的式子,枚举\(gcd\)(警告!多公式)。
\[\sum_{i=1}^n\sum_{j=1}^n i\cdot j\cdot gcd(i,j)\]
\[\sum_{d=1}^{n}d\sum_{i=1}^{\left\lfloor \frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor \frac{n}{d}\right\rfloor}[i\perp j]i\cdot j \cdot d^2\]
\[\sum_{d=1}^{n}d^3\sum_{i=1}^{\left \lfloor \frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor \frac{n}{d}\right\rfloor}[i\perp j]i\cdot j\]
\[\sum_{d=1}^{n}d^3\sum_{p=1}^{\left \lfloor \frac{n}{d}\right\rfloor}\mu(p)p^2\cdot \Big(\frac{(1+\left\lfloor \frac{n}{dp}\right\rfloor)\left\lfloor \frac{n}{dp}\right\rfloor}{2}\Big)^2\]
额,现在可以使用分块优化做到\(O(n)\)了,但是这完全不能胜任数据范围,我们换个角度,设\(dp=T\),枚举T会有什么结果?
\[\sum_{T=1}^{n}\Big(\frac{(1+\left\lfloor \frac{n}{T}\right\rfloor)\left\lfloor \frac{n}{T}\right\rfloor}{2}\Big)^2\sum_{d|T}d^3\cdot \mu(\frac{T}{d})(\frac{T}{d})^2\]
\[\sum_{T=1}^{n}\Big(\frac{(1+\left\lfloor \frac{n}{T}\right\rfloor)\left\lfloor \frac{n}{T}\right\rfloor}{2}\Big)^2 T^2\sum_{d|T}d\cdot \mu(\frac{T}{d})\]
现在好像反而变成\(O(n\log n)\)或\(O(n\sqrt{n})\)了,别急,我们看看第二层的求和的意义——狄利克雷卷积,这是\(Id\)函数与\(\mu\)函数的狄利克雷卷积,其值就等于\(\varphi\)。
\[\sum_{T=1}^{n}\Big(\frac{(1+\left\lfloor \frac{n}{T}\right\rfloor)\left\lfloor \frac{n}{T}\right\rfloor}{2}\Big)^2 T^2\varphi(T)\]
现在,我们只需要快速求出一个东西即可——\(T^2\varphi(T)\),前面的部分可以分块优化,我们急需解决的就是这个函数\(f(T)=T^2\varphi(T)\)的前缀和\(F(T)\)。显然,这是一个积性函数。
杜教筛的公式:
\[\sum_{i=1}^{n}(f*g)(i)=\sum_{i=1}^{n}\sum_{d|i}f(d)\cdot g(\frac{i}{d})=\sum_{i=1}^{n}g(i)\sum_{j=1}^{\left\lfloor \frac{n}{i}\right\rfloor}f(j)\]
于是我们需要一个函数与\(f\)卷起来,我们根据套路或枚举发现\(T^2\)项很恼人,于是尝试把这一项消掉,于是想到了\(g(x)=x^2\)。
\[\sum_{i=1}^{n}\sum_{d|i}d^2\varphi(d)\cdot (\frac{i}{d})^2=\sum_{i=1}^{n}i^2\sum_{j=1}^{\left\lfloor \frac{n}{i}\right\rfloor}f(j)\]
\[\sum_{i=1}^{n}i^2\sum_{d|i}\varphi(d)=\sum_{i=1}^{n}i^2F(\left\lfloor \frac{n}{i}\right\rfloor)\]
根据公式\(\sum_{d|i}\varphi(d)=i\),继续变形
\[\sum_{i=1}^{n}i^3=F(n)+\sum_{i=2}^{n}i^2F(\left\lfloor \frac{n}{i}\right\rfloor)\]
\[F(n)=\sum_{i=1}^{n}i^3-\sum_{i=2}^{n}i^2F(\left\lfloor \frac{n}{i}\right\rfloor)\]
由于\(p(i)=i^3\)和\(q(i)=i^2\)的前缀和都有公式,我们可以对右边进行分块优化,就可以杜教筛了!这道题圆满解决,时间复杂度\(O(n^{\frac{2}{3}})\)。
不过有些小细节要注意,比如模数乘\(2\)可能会爆\(int\),\(n^2\)可能会爆\(long\ long\),需要先取模再平方
\(Code:\)
#include <map> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define N 5000005 #define ll long long map<ll, ll>Phi; ll n, mod, g[N]; int p[N], h[N], phi[N], cnt; ll sqr(ll x) { ll a = 2 * x + 1, b = x + 1, c = x; if (b % 2 == 0)b /= 2; else c /= 2; if (a % 3 == 0)a /= 3; else if (b % 3 == 0)b /= 3; else c /= 3; a %= mod, b %= mod, c %= mod; return a * b % mod * c % mod; } ll seq(ll x) { ll a = x + 1, b = x; if (a % 2 == 0)a /= 2; else b /= 2; a %= mod, b %= mod; return a * b % mod; } ll vas(ll x) { ll a = seq(x); return a * a % mod; } ll G(ll x) { if (x <= N - 5) return g[int(x)]; if (Phi.find(x) != Phi.end()) return Phi[x]; ll ans = vas(x); ll lst = 1; for (ll i = 2; i <= x; i++) { i = x / (x / i); ll w = (sqr(i) - sqr(lst)) % mod; ans = (ans - w * G(x / i) % mod) % mod; lst = i; } if (ans < 0) ans += mod; Phi.insert(make_pair(x, ans)); return ans; } ll Ans(ll x) { ll ans = 0, lst = 0; for (ll i = 1; i <= x; i++) { i = x / (x / i); ll z = seq(x / i); z = z * z % mod; ans = (ans + z * (G(i) - G(lst)) % mod) % mod; lst = i; } if (ans < 0) ans += mod; return ans; } int main() { phi[1] = 1; for (int i = 2; i <= N - 5; i++) { if (!h[i]) { phi[i] = i - 1; p[++cnt] = i; } for (int j = 1; j <= cnt; j++) { if (i * p[j] > N - 5) break; h[i * p[j]] = 1; if (i % p[j] == 0) phi[i * p[j]] = phi[i] * p[j]; else phi[i * p[j]] = phi[i] * (p[j] - 1); } } cin >> mod >> n; for (int i = 1; i <= N - 5; i++) g[i] = (g[i - 1] + 1ll * phi[i] * i % mod * i % mod) % mod; cout << Ans(n) << '\n'; }