Java实现MapReduce Wordcount案例
程序员文章站
2024-01-07 12:46:34
先改pom.xml: 在resources文件夹下添加文件 log4j.properties: WordcountDriver.java: WordcountMapper.java: WordcountReducer.java: 在run configuration里加上参数e:/mrtest/in ......
先改pom.xml:
<project xmlns="http://maven.apache.org/pom/4.0.0"
xmlns:xsi="http://www.w3.org/2001/xmlschema-instance"
xsi:schemalocation="http://maven.apache.org/pom/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelversion>4.0.0</modelversion>
<groupid>com.mcq</groupid>
<artifactid>mr-1101</artifactid>
<version>0.0.1-snapshot</version>
<dependencies>
<dependency>
<groupid>jdk.tools</groupid>
<artifactid>jdk.tools</artifactid>
<version>1.8</version>
<scope>system</scope>
<systempath>${java_home}/lib/tools.jar</systempath>
</dependency>
<dependency>
<groupid>junit</groupid>
<artifactid>junit</artifactid>
<version>release</version>
</dependency>
<dependency>
<groupid>org.apache.logging.log4j</groupid>
<artifactid>log4j-core</artifactid>
<version>2.8.2</version>
</dependency>
<dependency>
<groupid>org.apache.hadoop</groupid>
<artifactid>hadoop-common</artifactid>
<version>2.7.2</version>
</dependency>
<dependency>
<groupid>org.apache.hadoop</groupid>
<artifactid>hadoop-client</artifactid>
<version>2.7.2</version>
</dependency>
<dependency>
<groupid>org.apache.hadoop</groupid>
<artifactid>hadoop-hdfs</artifactid>
<version>2.7.2</version>
</dependency>
</dependencies>
</project>
在resources文件夹下添加文件 log4j.properties:
log4j.rootlogger=info, stdout
log4j.appender.stdout=org.apache.log4j.consoleappender
log4j.appender.stdout.layout=org.apache.log4j.patternlayout
log4j.appender.stdout.layout.conversionpattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.fileappender
log4j.appender.logfile.file=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.patternlayout
log4j.appender.logfile.layout.conversionpattern=%d %p [%c] - %m%n
wordcountdriver.java:
package com.mcq;
import java.io.ioexception;
import org.apache.hadoop.conf.configuration;
import org.apache.hadoop.fs.path;
import org.apache.hadoop.io.intwritable;
import org.apache.hadoop.io.text;
import org.apache.hadoop.mapreduce.job;
import org.apache.hadoop.mapreduce.lib.input.fileinputformat;
import org.apache.hadoop.mapreduce.lib.output.fileoutputformat;
public class wordcountdriver{
public static void main(string[] args) throws ioexception, classnotfoundexception, interruptedexception {
system.out.println("hello");
configuration conf=new configuration();
//1.获取job对象
job job=job.getinstance(conf);
//2.设置jar存储位置
job.setjarbyclass(wordcountdriver.class);
//3.关联map和reduce类
job.setmapperclass(wordcountmapper.class);
job.setreducerclass(wordcountreducer.class);
//4.设置mapper阶段输出数据的key和value类型
job.setmapoutputkeyclass(text.class);
job.setmapoutputvalueclass(intwritable.class);
//5.设置最终输出的key和value类型
job.setoutputkeyclass(text.class);
job.setoutputvalueclass(intwritable.class);
//6.设置输入路径和输出路径
fileinputformat.setinputpaths(job, new path(args[0]));
fileoutputformat.setoutputpath(job, new path(args[1]));
//7.提交job
// job.submit();
job.waitforcompletion(true);
// boolean res=job.waitforcompletion(true);//true表示打印结果
// system.exit(res?0:1);
}
}
wordcountmapper.java:
package com.mcq;
import java.io.ioexception;
import org.apache.hadoop.io.intwritable;
import org.apache.hadoop.io.longwritable;
import org.apache.hadoop.io.text;
import org.apache.hadoop.mapreduce.mapper;
//map阶段
//keyin:输入数据的key(偏移量,比如第一行是0~19,第二行是20~25),必须是longwritable
//valuein:输入数据的value(比如文本内容是字符串,那就填text)
//keyout:输出数据的key类型
//valueout:输出数据的值类型
public class wordcountmapper extends mapper<longwritable, text, text, intwritable>{
intwritable v=new intwritable(1);
text k = new text();
@override
protected void map(longwritable key, text value, mapper<longwritable, text, text, intwritable>.context context)
throws ioexception, interruptedexception {
// todo auto-generated method stub
//1.获取一行
string line=value.tostring();
//2.切割单词
string[] words=line.split(" ");
//3.循环写出
for(string word:words) {
k.set(word);
context.write(k, v);
}
}
}
wordcountreducer.java:
package com.mcq;
import java.io.ioexception;
import org.apache.hadoop.io.intwritable;
import org.apache.hadoop.io.text;
import org.apache.hadoop.mapreduce.reducer;
//keyin、valuein:map阶段输出的key和value类型
public class wordcountreducer extends reducer<text, intwritable, text, intwritable>{
intwritable v=new intwritable();
@override
protected void reduce(text key, iterable<intwritable> values,
reducer<text, intwritable, text, intwritable>.context context) throws ioexception, interruptedexception {
// todo auto-generated method stub
int sum=0;
for(intwritable value:values) {
sum+=value.get();
}
v.set(sum);
context.write(key, v);
}
}
在run configuration里加上参数e:/mrtest/in.txt e:/mrtest/out.txt
运行时遇到了个bug,参考https://blog.csdn.net/qq_40310148/article/details/86617512解决了
在集群上运行:
用maven打成jar包,需要添加一些打包依赖:
<build>
<plugins>
<plugin>
<artifactid>maven-compiler-plugin</artifactid>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactid>maven-assembly-plugin </artifactid>
<configuration>
<descriptorrefs>
<descriptorref>jar-with-dependencies</descriptorref>
</descriptorrefs>
<archive>
<manifest>
<mainclass>com.mcq.wordcountdriver</mainclass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
注意上面mainclass里要填驱动类的主类名,可以点击类名右键copy qualified name。
将程序打成jar包(具体操作:右键工程名run as maven install,然后target文件夹会产生两个jar包,我们把不用依赖的包拷贝到hadoop集群上,因为集群已经配好相关依赖了),上传到集群
输入以下命令运行
hadoop jar mr-1101-0.0.1-snapshot.jar com.mcq.wordcountdriver /xiaocao.txt /output
注意这里输入输出的路径是集群上的路径。