欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)

程序员文章站 2024-01-03 00:02:28
题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字。只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯。还不赶快行动!” 你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才 ......

题目描述

“……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字。只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯。还不赶快行动!”

你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢?

输入输出格式

输入格式:

 

整数n(2≤n≤33),表示不同球星名字的个数。

 

输出格式:

 

输出凑齐所有的名字平均需要买的饮料瓶数。如果是一个整数,则直接输出,否则应该直接按照分数格式输出,例如五又二十分之三应该输出为(复制到记事本):

3 5-- 20 第一行是分数部分的分子,第二行首先是整数部分,然后是由减号组成的分数线,第三行是分母。减号的个数应等于分母的为数。分子和分母的首位都与第一个减号对齐。

分数必须是不可约的。

 

输入输出样例

输入样例#1: 复制
2
输出样例#1: 复制
3

 

 

说一种和楼上不一样的状态(本质是一样的)

我们用$f(i)$表示一共用$n$个不同的球星,已经收集到$i$个不同的球星

考虑转移,有两种状态

1. 买到不同时转移而来,概率为
$$\frac{n-i}{n}f(i-1)$$
2. 买到相同时转移而来,概率为
$$\frac{i}{n}f(i)$$

那么总共的情况就是
$$f(i)=\frac{n-i}{n}f(i-1)+\frac{i}{n}f(i)+1$$

化简得到

$$f(i)=f(i-1)+\frac{n}{n-i}$$

这个公式实际是在计算

$$n*\sum_1^n{\frac{1}{n-i}}$$

然后暴力算就可以了

#include<cstdio>
#define int long long int
int gcd(int a,int b){return b==0?a:gcd(b,a%b);}
int calc(int x)
{
    int base=0;
    while(x) base++,x/=10;
    return base;
}
main()
{
    int N;
    scanf("%lld",&N);
    int up=1,down=N;
    for(int i=N-1;i>=1;i--)
    {
        up=up*i+down;down=down*i;
        int r=gcd(up,down);
        up/=r;down/=r;
    }
    up=up*N;
    int r=gcd(up,down);
    up/=r;down/=r;
    if(up%down==0) {printf("%lld",up/down);return 0;}
    int numa=calc(up/down),numb=calc(down);
    for(int i=1;i<=numa;i++) printf(" ");printf("%lld",up%down);puts("");//分子
    if(up/down>1) printf("%lld",up/down);for(int i=1;i<=numb;i++) printf("-");puts("");//注意这里要特判
    for(int i=1;i<=numa;i++) printf(" ");printf("%lld",down);
    return 0;
}

 

 

 







上一篇:

下一篇: